可视化模块修改

This commit is contained in:
weixin_46229132 2025-04-12 22:48:07 +08:00
parent 5c382e1810
commit a3a5e5738a
4 changed files with 66 additions and 58 deletions

View File

@ -15,8 +15,11 @@ class DirectoryManager:
def clean_output_dir(self):
"""清理输出目录"""
try:
shutil.rmtree(self.config.output_dir)
print(f"已清理输出目录: {self.config.output_dir}")
if os.path.exists(self.config.output_dir):
shutil.rmtree(self.config.output_dir)
print(f"已清理输出目录: {self.config.output_dir}")
else:
pass
except Exception as e:
print(f"清理输出目录时发生错误: {str(e)}")
raise
@ -65,7 +68,7 @@ class DirectoryManager:
free_space = disk_usage.free
# 计算所需空间输入大小的10倍
required_space = input_size * 10
required_space = input_size * 8
if free_space < required_space:
error_msg = (

View File

@ -2,34 +2,35 @@ import logging
import os
from datetime import datetime
def setup_logger(output_dir):
# 创建logs目录
log_dir = os.path.join(output_dir, 'logs')
# 创建日志文件名(包含时间戳)
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
log_file = os.path.join(log_dir, f'preprocess_{timestamp}.log')
# 配置日志格式
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
# 配置文件处理器
file_handler = logging.FileHandler(log_file, encoding='utf-8')
file_handler.setFormatter(formatter)
# 配置控制台处理器
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
# 获取根日志记录器
logger = logging.getLogger('UAV_Preprocess')
logger.setLevel(logging.INFO)
# 添加处理器
logger.addHandler(file_handler)
logger.addHandler(console_handler)
return logger
return logger

View File

@ -85,21 +85,20 @@ class ODMProcessMonitor:
self.logger.error("容器运行失败的详细错误日志:")
for line in error_msg:
self.logger.error(line)
container.remove()
time.sleep(5)
else:
# 获取所有日志
logs = container.logs().decode("utf-8").splitlines()
# 输出最后 50 行日志
self.logger.info("容器运行完成,以下是最后 50 行日志:")
for line in logs[-50:]:
self.logger.info(line)
success = True
error_msg = ""
container.remove()
break
# 删除容器
container.remove()
time.sleep(5)
return success, error_msg

View File

@ -8,11 +8,11 @@ from pyproj import Transformer
class FilterVisualizer:
"""过滤结果可视化器"""
def __init__(self, output_dir: str):
"""
初始化可视化器
Args:
output_dir: 输出目录路径
"""
@ -24,28 +24,28 @@ class FilterVisualizer:
"EPSG:32649", # UTM49N
always_xy=True
)
def _convert_to_utm(self, lon: pd.Series, lat: pd.Series) -> tuple:
"""
将经纬度坐标转换为UTM坐标
Args:
lon: 经度序列
lat: 纬度序列
Returns:
tuple: (x坐标, y坐标)
"""
return self.transformer.transform(lon, lat)
def visualize_filter_step(self,
current_points: pd.DataFrame,
previous_points: pd.DataFrame,
step_name: str,
save_name: Optional[str] = None):
def visualize_filter_step(self,
current_points: pd.DataFrame,
previous_points: pd.DataFrame,
step_name: str,
save_name: Optional[str] = None):
"""
可视化单个过滤步骤的结果
Args:
current_points: 当前步骤后的点
previous_points: 上一步骤的点
@ -53,39 +53,43 @@ class FilterVisualizer:
save_name: 保存文件名默认为step_name
"""
self.logger.info(f"开始生成{step_name}的可视化结果")
# 找出被过滤掉的点
filtered_files = set(previous_points['file']) - set(current_points['file'])
filtered_points = previous_points[previous_points['file'].isin(filtered_files)]
filtered_files = set(
previous_points['file']) - set(current_points['file'])
filtered_points = previous_points[previous_points['file'].isin(
filtered_files)]
# 转换坐标到UTM
current_x, current_y = self._convert_to_utm(current_points['lon'], current_points['lat'])
filtered_x, filtered_y = self._convert_to_utm(filtered_points['lon'], filtered_points['lat'])
current_x, current_y = self._convert_to_utm(
current_points['lon'], current_points['lat'])
filtered_x, filtered_y = self._convert_to_utm(
filtered_points['lon'], filtered_points['lat'])
# 创建图形
plt.rcParams['font.sans-serif']=['SimHei']#黑体
plt.rcParams['font.sans-serif'] = ['SimHei'] # 黑体
plt.rcParams['axes.unicode_minus'] = False
plt.figure()
plt.figure(figsize=(20, 20))
# 绘制保留的点
plt.scatter(current_x, current_y,
color='blue', label='保留的点',
alpha=0.6, s=50)
color='blue', label='保留的点',
alpha=0.6, s=5)
# 绘制被过滤的点
if not filtered_points.empty:
plt.scatter(filtered_x, filtered_y,
color='red', marker='x', label='过滤的点',
alpha=0.6, s=100)
color='red', marker='x', label='过滤的点')
# 设置图形属性
plt.title(f"{step_name}后的GPS点\n"
f"(过滤: {len(filtered_points)}, 保留: {len(current_points)})",
fontsize=14)
f"(过滤: {len(filtered_points)}, 保留: {len(current_points)})",
fontsize=14)
plt.xlabel("东向坐标 (米)", fontsize=12)
plt.ylabel("北向坐标 (米)", fontsize=12)
plt.grid(True)
plt.axis('equal')
# 添加统计信息
stats_text = (
f"原始点数: {len(previous_points)}\n"
@ -94,20 +98,21 @@ class FilterVisualizer:
f"过滤率: {len(filtered_points)/len(previous_points)*100:.1f}%"
)
plt.figtext(0.02, 0.02, stats_text, fontsize=10,
bbox=dict(facecolor='white', alpha=0.8))
bbox=dict(facecolor='white', alpha=0.8))
# 添加图例
plt.legend(loc='upper right', fontsize=10)
# 调整布局
plt.tight_layout()
# 保存图形
save_name = save_name or step_name.lower().replace(' ', '_')
save_path = os.path.join(self.output_dir, 'filter_imgs', f'filter_{save_name}.png')
save_path = os.path.join(
self.output_dir, 'filter_imgs', f'filter_{save_name}.png')
plt.savefig(save_path, dpi=300, bbox_inches='tight')
plt.close()
self.logger.info(
f"{step_name}过滤可视化结果已保存至 {save_path}\n"
f"过滤掉 {len(filtered_points)} 个点,"
@ -120,11 +125,11 @@ if __name__ == '__main__':
# 测试代码
import numpy as np
from datetime import datetime
# 创建测试数据
np.random.seed(42)
n_points = 1000
# 生成随机点
test_data = pd.DataFrame({
'lon': np.random.uniform(120, 121, n_points),
@ -132,16 +137,16 @@ if __name__ == '__main__':
'file': [f'img_{i}.jpg' for i in range(n_points)],
'date': [datetime.now() for _ in range(n_points)]
})
# 随机选择点作为过滤后的结果
filtered_data = test_data.sample(n=800)
# 测试可视化
visualizer = FilterVisualizer('test_output')
os.makedirs('test_output', exist_ok=True)
visualizer.visualize_filter_step(
filtered_data,
test_data,
"Test Filter"
)
)