增加划分网格过程的可视化
This commit is contained in:
parent
17deadb25e
commit
a7a08f4cc5
@ -197,8 +197,10 @@ class ImagePreprocessor:
|
||||
def divide_grids(self) -> Dict[int, pd.DataFrame]:
|
||||
"""划分网格"""
|
||||
self.logger.info(f"开始划分网格 (重叠率: {self.config.grid_overlap})")
|
||||
self.logger.info(f"开始划分网格 (重叠率: {self.config.grid_overlap})")
|
||||
grid_divider = GridDivider(overlap=self.config.grid_overlap)
|
||||
grid_divider = GridDivider(
|
||||
overlap=self.config.grid_overlap,
|
||||
output_dir=self.config.output_dir
|
||||
)
|
||||
grids = grid_divider.divide_grids(
|
||||
self.gps_points, grid_size=self.config.grid_size
|
||||
)
|
||||
@ -288,8 +290,8 @@ class ImagePreprocessor:
|
||||
try:
|
||||
self.extract_gps()
|
||||
self.cluster()
|
||||
self.filter_time_group_overlap()
|
||||
self.filter_points()
|
||||
# self.filter_time_group_overlap()
|
||||
# self.filter_points()
|
||||
grid_points = self.divide_grids()
|
||||
self.copy_images(grid_points)
|
||||
self.logger.info("预处理任务完成")
|
||||
@ -306,8 +308,8 @@ class ImagePreprocessor:
|
||||
if __name__ == "__main__":
|
||||
# 创建配置
|
||||
config = PreprocessConfig(
|
||||
image_dir=r"F:\error_data\20240930091614\project\images",
|
||||
output_dir=r"G:\20240930091614\output",
|
||||
image_dir=r"F:\error_data\20241024100834\code\images",
|
||||
output_dir=r"G:\20241024100834\output",
|
||||
|
||||
cluster_eps=0.01,
|
||||
cluster_min_samples=5,
|
||||
@ -324,9 +326,10 @@ if __name__ == "__main__":
|
||||
filter_time_threshold=timedelta(minutes=5),
|
||||
|
||||
grid_size=1000,
|
||||
grid_overlap=0.03,
|
||||
|
||||
|
||||
mode="快拼模式",
|
||||
mode="重建模式",
|
||||
)
|
||||
|
||||
# 创建处理器并执行
|
||||
|
@ -1,11 +1,15 @@
|
||||
import logging
|
||||
from geopy.distance import geodesic
|
||||
import matplotlib.pyplot as plt
|
||||
import os
|
||||
|
||||
|
||||
class GridDivider:
|
||||
"""划分九宫格,并将图片分配到对应网格"""
|
||||
|
||||
def __init__(self, overlap=0.1):
|
||||
def __init__(self, overlap=0.1, output_dir=None):
|
||||
self.overlap = overlap
|
||||
self.output_dir = output_dir
|
||||
self.logger = logging.getLogger('UAV_Preprocess.GridDivider')
|
||||
self.logger.info(f"初始化网格划分器,重叠率: {overlap}")
|
||||
|
||||
@ -25,29 +29,38 @@ class GridDivider:
|
||||
)
|
||||
|
||||
# 计算需要划分的网格数量
|
||||
num_grids_width = int(width / grid_size) if int(width / grid_size) > 0 else 1
|
||||
num_grids_height = int(height / grid_size) if int(height / grid_size) > 0 else 1
|
||||
num_grids_width = int(
|
||||
width / grid_size) if int(width / grid_size) > 0 else 1
|
||||
num_grids_height = int(
|
||||
height / grid_size) if int(height / grid_size) > 0 else 1
|
||||
|
||||
# 计算每个网格对应的经纬度步长
|
||||
lat_step = (max_lat - min_lat) / num_grids_height
|
||||
lon_step = (max_lon - min_lon) / num_grids_width
|
||||
|
||||
|
||||
grids = []
|
||||
for i in range(num_grids_height):
|
||||
for j in range(num_grids_width):
|
||||
grid_min_lat = min_lat + i * lat_step - self.overlap * lat_step
|
||||
grid_max_lat = min_lat + (i + 1) * lat_step + self.overlap * lat_step
|
||||
grid_max_lat = min_lat + \
|
||||
(i + 1) * lat_step + self.overlap * lat_step
|
||||
grid_min_lon = min_lon + j * lon_step - self.overlap * lon_step
|
||||
grid_max_lon = min_lon + (j + 1) * lon_step + self.overlap * lon_step
|
||||
grids.append((grid_min_lat, grid_max_lat, grid_min_lon, grid_max_lon))
|
||||
grid_max_lon = min_lon + \
|
||||
(j + 1) * lon_step + self.overlap * lon_step
|
||||
grids.append((grid_min_lat, grid_max_lat,
|
||||
grid_min_lon, grid_max_lon))
|
||||
|
||||
self.logger.debug(
|
||||
f"网格[{i},{j}]: 纬度[{grid_min_lat:.6f}, {grid_max_lat:.6f}], "
|
||||
f"经度[{grid_min_lon:.6f}, {grid_max_lon:.6f}]"
|
||||
)
|
||||
|
||||
self.logger.info(f"成功划分为 {len(grids)} 个网格 ({num_grids_width}x{num_grids_height})")
|
||||
self.logger.info(
|
||||
f"成功划分为 {len(grids)} 个网格 ({num_grids_width}x{num_grids_height})")
|
||||
|
||||
# 添加可视化调用
|
||||
self.visualize_grids(points_df, grids)
|
||||
|
||||
return grids
|
||||
|
||||
def assign_to_grids(self, points_df, grids):
|
||||
@ -85,3 +98,39 @@ class GridDivider:
|
||||
)
|
||||
|
||||
return grid_points
|
||||
|
||||
def visualize_grids(self, points_df, grids):
|
||||
"""可视化网格划分和GPS点的分布"""
|
||||
self.logger.info("开始可视化网格划分")
|
||||
|
||||
plt.figure(figsize=(12, 8))
|
||||
|
||||
# 绘制GPS点
|
||||
plt.scatter(points_df['lon'], points_df['lat'],
|
||||
c='blue', s=10, alpha=0.6, label='GPS点')
|
||||
|
||||
# 绘制网格
|
||||
for i, (min_lat, max_lat, min_lon, max_lon) in enumerate(grids):
|
||||
plt.plot([min_lon, max_lon, max_lon, min_lon, min_lon],
|
||||
[min_lat, min_lat, max_lat, max_lat, min_lat],
|
||||
'r-', alpha=0.5)
|
||||
# 在网格中心添加网格编号
|
||||
center_lon = (min_lon + max_lon) / 2
|
||||
center_lat = (min_lat + max_lat) / 2
|
||||
plt.text(center_lon, center_lat, str(i),
|
||||
horizontalalignment='center', verticalalignment='center')
|
||||
|
||||
plt.title('网格划分与GPS点分布图')
|
||||
plt.xlabel('经度')
|
||||
plt.ylabel('纬度')
|
||||
plt.legend()
|
||||
plt.grid(True)
|
||||
|
||||
# 如果提供了输出目录,保存图像
|
||||
if self.output_dir:
|
||||
save_path = os.path.join(
|
||||
self.output_dir, 'filter_imgs', 'grid_division.png')
|
||||
plt.savefig(save_path, dpi=300, bbox_inches='tight')
|
||||
self.logger.info(f"网格划分可视化图已保存至: {save_path}")
|
||||
|
||||
plt.close()
|
||||
|
Loading…
Reference in New Issue
Block a user