新的网格划分算法

This commit is contained in:
along 2025-01-08 14:29:01 +08:00
parent 8ae2ec610c
commit c789e0b171
2 changed files with 298 additions and 1 deletions

View File

@ -231,6 +231,6 @@ if __name__ == "__main__":
# 使用示例
selector = GPSSelector(
image_dir=r"G:\error_data\20240930091614\project\images",
output_dir=r"C:\datasets\ODM_output\error1_L"
output_dir=r"G:\test_data\error1_ao"
)
selector.run()

297
grid.py Normal file
View File

@ -0,0 +1,297 @@
import csv
import numpy as np
import matplotlib.pyplot as plt
import math
from shapely.geometry import box, MultiPoint
from shapely.ops import unary_union
from scipy.spatial import cKDTree
from utils.gps_extractor import GPSExtractor
# ---------------------- overlap 截断为不超过 10% ----------------------
def clamp_overlap(overlap):
if overlap < 0:
return 0.0
elif overlap > 0.1:
return 0.1
else:
return overlap
# ====================== 1) 生成可用矩形并记录其覆盖点集 ======================
def generate_rectangles_with_point_indices(points, w, h, overlap=0.1, min_points=800):
"""
bounding box (w, h) + overlap 布置网格生成所有矩形
过滤只保留"矩形内点数 >= min_points"的矩形
返回:
rect_info_list: list of (rect_polygon, covered_indices)
- rect_polygon: Shapely Polygon
- covered_indices: 一个 set表示该矩形覆盖的所有点索引
"""
overlap = clamp_overlap(overlap)
if len(points) == 0:
return []
minx, miny = np.min(points, axis=0)
maxx, maxy = np.max(points, axis=0)
# 特殊情况:只有一个点或非常小范围 -> 很难满足 800 点
if abs(maxx - minx) < 1e-15 and abs(maxy - miny) < 1e-15:
return []
# 步长
step_x = w * (1 - overlap)
step_y = h * (1 - overlap)
x_coords = np.arange(minx, maxx + step_x, step_x)
y_coords = np.arange(miny, maxy + step_y, step_y)
# 建立 KDTree加速查找
tree = cKDTree(points)
rect_info_list = []
for x in x_coords:
for y in y_coords:
rect_poly = box(x, y, x + w, y + h)
rx_min, ry_min, rx_max, ry_max = rect_poly.bounds
cx = (rx_min + rx_max) / 2
cy = (ry_min + ry_max) / 2
r = math.sqrt((rx_max - rx_min) ** 2 + (ry_max - ry_min) ** 2) / 2
candidate_ids = tree.query_ball_point([cx, cy], r)
if not candidate_ids:
continue
covered_set = set()
for idx_pt in candidate_ids:
px, py = points[idx_pt]
if rx_min <= px <= rx_max and ry_min <= py <= ry_max:
covered_set.add(idx_pt)
# 如果覆盖的点数不足 min_points就不保留
if len(covered_set) < min_points:
continue
rect_info_list.append((rect_poly, covered_set))
return rect_info_list
# ====================== 2) 贪心算法选取子集覆盖所有点 ======================
def cover_all_points_greedy(points, rect_info_list):
"""
给定所有点 points 以及 "可用矩形+覆盖点集合" rect_info_list
要求:
- 选出若干矩形使得所有点都被覆盖 (每个点至少属于1个选中矩形)
- 最终并集面积最小 (做近似贪心)
返回:
chosen_rects: 最终选出的矩形列表 (每个是 shapely Polygon)
"""
n = len(points)
all_indices = set(range(n)) # 所有点的索引
uncovered = set(all_indices) # 尚未被覆盖的点索引
chosen_rects = []
union_polygon = None # 当前已选矩形的并集
# 如果没有任何矩形可用,就直接失败
if not rect_info_list:
return []
# 为了在贪心过程中快速评估"新矩形带来的额外并集面积"
# 我们每次选择矩形后更新 union_polygon然后比较 union_polygon.union(new_rect).area - union_polygon.area
# 但 union_polygon 初始为 None
while uncovered:
best_gain = 0
best_new_area = float('inf')
best_rect = None
best_covered_new = set()
for rect_poly, covered_set in rect_info_list:
# 计算能覆盖多少"尚未覆盖"的点
newly_covered = uncovered.intersection(covered_set)
if not newly_covered:
continue
# 计算额外增加的并集面积
if union_polygon is None:
# 第一次选union_polygon 为空 => new_area = rect_poly.area
new_area = rect_poly.area
area_increase = new_area
else:
# 计算 union_polygon rect_poly 的面积
test_union = union_polygon.union(rect_poly)
new_area = test_union.area
area_increase = new_area - union_polygon.area
# 贪心策略:最大化 (覆盖点数量) / (面积增量)
# 或者 equivalently, (覆盖点数量) 多、(面积增量) 小 都是好
ratio = len(newly_covered) / max(area_increase, 1e-12)
# 我们要找到 ratio 最大的那个
if ratio > best_gain:
best_gain = ratio
best_new_area = area_increase
best_rect = rect_poly
best_covered_new = newly_covered
if best_rect is None:
# 没有可选的矩形能覆盖任何剩余点 => 失败 (无法覆盖所有点)
return []
# 选中 best_rect
chosen_rects.append(best_rect)
uncovered -= best_covered_new
# 更新并集
if union_polygon is None:
union_polygon = best_rect
else:
union_polygon = union_polygon.union(best_rect)
return chosen_rects
# ====================== 3) 主流程: 离散搜索 (w,h) + 贪心覆盖 ======================
def find_optimal_rectangles_cover_all_points(
points,
base_w,
base_h,
overlap=0.1,
steps=5,
min_points=800
):
"""
[0.5*base_w,1.5*base_w] x [0.5*base_h,1.5*base_h] 的离散区间枚举 (w,h)
- 生成可用矩形(800 )的列表
- 用贪心算法选出子集来覆盖所有点
- 计算选中矩形的并集面积
选出面积最小的方案并返回
"""
overlap = clamp_overlap(overlap)
n = len(points)
if n == 0:
return [], (base_w, base_h), 0.0 # 没有点就不用覆盖了
w_candidates = np.linspace(0.3 * base_w, 2 * base_w, steps)
h_candidates = np.linspace(0.3 * base_h, 2 * base_h, steps)
best_rects = []
best_area = float('inf')
best_w, best_h = base_w, base_h
for w in w_candidates:
for h in h_candidates:
rect_info_list = generate_rectangles_with_point_indices(points, w, h, overlap, min_points)
if not rect_info_list:
# 说明没有任何矩形能达到 "≥800点"
continue
# 用贪心覆盖所有点
chosen_rects = cover_all_points_greedy(points, rect_info_list)
if not chosen_rects:
# 无法覆盖所有点
continue
# 计算并集面积
union_poly = unary_union(chosen_rects)
area_covered = union_poly.area
if area_covered < best_area:
best_area = area_covered
best_rects = chosen_rects
best_w, best_h = w, h
return best_rects, (best_w, best_h), best_area
# ====================== 4) 读取 CSV + 可视化 ======================
def plot_image_points_cover_all_min_area(
image_dir, # 新参数:图片文件夹路径
base_rect_width=0.001,
base_rect_height=0.001,
overlap=0.1,
steps=5,
min_points=800
):
"""
从图片文件夹读取GPS坐标:
1) 使用 GPSExtractor 从图片中提取GPS坐标
2) [0.5*base_w,1.5*base_w] x [0.5*base_h,1.5*base_h] 离散搜索 (w,h)
3) 对每个 (w,h), 先生成所有"含≥800点"的矩形 => 再用贪心覆盖所有点 => 计算并集面积
4) 最小并集面积的方案即近似最优解
5) 最终用该方案可视化
"""
overlap = clamp_overlap(overlap)
# 使用 GPSExtractor 读取图片GPS坐标
extractor = GPSExtractor(image_dir)
gps_df = extractor.extract_all_gps()
if gps_df.empty:
print("未能从图片中提取到GPS坐标。")
return
points = np.column_stack((gps_df['lon'], gps_df['lat'])) # (N, 2), [x=lon, y=lat]
n = len(points)
if n == 0:
print("No points extracted from images.")
return
# 贪心 + 离散搜索
chosen_rects, (best_w, best_h), best_area = find_optimal_rectangles_cover_all_points(
points,
base_w=base_rect_width,
base_h=base_rect_height,
overlap=overlap,
steps=steps,
min_points=min_points
)
if not chosen_rects:
print(f"无法找到满足 '每个矩形≥{min_points}' 且覆盖所有点 的方案,试着调大尺寸/步数/overlap。")
return
# 可视化
plt.figure(figsize=(10, 8))
# 画点
plt.scatter(points[:, 0], points[:, 1], c='red', s=10, label='Points')
# 画矩形
for i, rect in enumerate(chosen_rects):
if rect.is_empty:
continue
x, y = rect.exterior.xy
plt.fill(x, y, edgecolor='green', fill=False, alpha=0.3,
label='Chosen Rectangles' if i == 0 else "")
plt.title(
f"Cover All Points, Each Rect≥{min_points} pts, Minimal Union Area\n"
f"base=({base_rect_width:.6f} x {base_rect_height:.6f}), overlap≤{overlap}, steps={steps}\n"
f"best (w,h)=({best_w:.6f},{best_h:.6f}), union area={best_area:.6f}, #rect={len(chosen_rects)}"
)
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.legend()
plt.grid(True)
plt.show()
# ------------------ 测试入口 ------------------
if __name__ == "__main__":
image_dir = r"C:\datasets\134\code\images" # 替换为你的图片文件夹路径
plot_image_points_cover_all_min_area(
image_dir,
base_rect_width=0.01,
base_rect_height=0.01,
overlap=0.05, # 会被截断到 0.1
steps=40,
min_points=100
)