更新merge代码

This commit is contained in:
龙澳 2024-12-31 14:23:45 +08:00
parent 96022f4e22
commit ef1a84373a
7 changed files with 558 additions and 87 deletions

View File

@ -19,3 +19,4 @@ conda install -c conda-forge open3d
- command_runner中rerun需要更新 - command_runner中rerun需要更新
- grid要动态分割大小 - grid要动态分割大小
- 任务队列 - 任务队列
- 目前obj转osgb的软件windows没有装上linux成功了,后续需要做一个docker镜像

View File

@ -209,6 +209,26 @@ class ImagePreprocessor:
) )
grid_points = grid_divider.assign_to_grids(self.gps_points, grids) grid_points = grid_divider.assign_to_grids(self.gps_points, grids)
self.logger.info(f"成功划分为 {len(grid_points)} 个网格") self.logger.info(f"成功划分为 {len(grid_points)} 个网格")
# 生成image_groups.txt文件
try:
groups_file = os.path.join(self.config.output_dir, "image_groups.txt")
self.logger.info(f"开始生成分组文件: {groups_file}")
with open(groups_file, 'w') as f:
for grid_idx, points_lt in grid_points.items():
# 使用ASCII字母作为组标识A, B, C...
group_letter = chr(65 + grid_idx) # 65是ASCII中'A'的编码
# 为每个网格中的图像写入分组信息
for point in points_lt:
f.write(f"{point['file']} {group_letter}\n")
self.logger.info(f"分组文件生成成功: {groups_file}")
except Exception as e:
self.logger.error(f"生成分组文件时发生错误: {str(e)}", exc_info=True)
raise
return grid_points return grid_points
def copy_images(self, grid_points: Dict[int, pd.DataFrame]): def copy_images(self, grid_points: Dict[int, pd.DataFrame]):
@ -270,8 +290,8 @@ class ImagePreprocessor:
if __name__ == "__main__": if __name__ == "__main__":
# 创建配置 # 创建配置
config = PreprocessConfig( config = PreprocessConfig(
image_dir=r"E:\datasets\UAV\1815\images", image_dir=r"E:\datasets\UAV\134\project\images",
output_dir=r"G:\ODM_output\1815", output_dir=r"G:\ODM_output\134_test",
cluster_eps=0.01, cluster_eps=0.01,
cluster_min_samples=5, cluster_min_samples=5,
@ -287,8 +307,8 @@ if __name__ == "__main__":
filter_dense_distance_threshold=10, filter_dense_distance_threshold=10,
filter_time_threshold=timedelta(minutes=5), filter_time_threshold=timedelta(minutes=5),
grid_size=500, grid_size=300,
grid_overlap=0.05, grid_overlap=0.1,
mode="重建模式", mode="重建模式",

319
odm_preprocess_fast.py Normal file
View File

@ -0,0 +1,319 @@
import os
import shutil
from datetime import timedelta
from dataclasses import dataclass
from typing import Dict
import matplotlib.pyplot as plt
import pandas as pd
from tqdm import tqdm
from filter.cluster_filter import GPSCluster
from filter.time_group_overlap_filter import TimeGroupOverlapFilter
from filter.gps_filter import GPSFilter
from utils.odm_monitor import ODMProcessMonitor
from utils.gps_extractor import GPSExtractor
from utils.grid_divider import GridDivider
from utils.logger import setup_logger
from utils.visualizer import FilterVisualizer
from post_pro.merge_tif import MergeTif
from tools.test_docker_run import run_docker_command
from post_pro.merge_obj import MergeObj
from post_pro.merge_ply import MergePly
@dataclass
class PreprocessConfig:
"""预处理配置类"""
image_dir: str
output_dir: str
# 聚类过滤参数
cluster_eps: float = 0.01
cluster_min_samples: int = 5
# 时间组重叠过滤参数
time_group_overlap_threshold: float = 0.7
time_group_interval: timedelta = timedelta(minutes=5)
# 孤立点过滤参数
filter_distance_threshold: float = 0.001 # 经纬度距离
filter_min_neighbors: int = 6
# 密集点过滤参数
filter_grid_size: float = 0.001
filter_dense_distance_threshold: float = 10 # 普通距离,单位:米
filter_time_threshold: timedelta = timedelta(minutes=5)
# 网格划分参数
grid_overlap: float = 0.05
grid_size: float = 500
# 几个pipline过程是否开启
mode: str = "快拼模式"
class ImagePreprocessor:
def __init__(self, config: PreprocessConfig):
self.config = config
# # 清理并重建输出目录
# if os.path.exists(config.output_dir):
# self._clean_output_dir()
# self._setup_output_dirs()
# 初始化其他组件
self.logger = setup_logger(config.output_dir)
self.gps_points = None
self.odm_monitor = ODMProcessMonitor(
config.output_dir, mode=config.mode)
self.visualizer = FilterVisualizer(config.output_dir)
def _clean_output_dir(self):
"""清理输出目录"""
try:
shutil.rmtree(self.config.output_dir)
print(f"已清理输出目录: {self.config.output_dir}")
except Exception as e:
print(f"清理输出目录时发生错误: {str(e)}")
raise
def _setup_output_dirs(self):
"""创建必要的输出目录结构"""
try:
# 创建主输出目录
os.makedirs(self.config.output_dir)
# 创建过滤图像保存目录
os.makedirs(os.path.join(self.config.output_dir, 'filter_imgs'))
# 创建日志目录
os.makedirs(os.path.join(self.config.output_dir, 'logs'))
print(f"已创建输出目录结构: {self.config.output_dir}")
except Exception as e:
print(f"创建输出目录时发生错误: {str(e)}")
raise
def extract_gps(self) -> pd.DataFrame:
"""提取GPS数据"""
self.logger.info("开始提取GPS数据")
extractor = GPSExtractor(self.config.image_dir)
self.gps_points = extractor.extract_all_gps()
self.logger.info(f"成功提取 {len(self.gps_points)} 个GPS点")
return self.gps_points
def cluster(self) -> pd.DataFrame:
"""使用DBSCAN对GPS点进行聚类只保留最大的类"""
self.logger.info("开始聚类")
previous_points = self.gps_points.copy()
# 创建聚类器并执行聚类
clusterer = GPSCluster(
self.gps_points, output_dir=self.config.output_dir,
eps=self.config.cluster_eps, min_samples=self.config.cluster_min_samples)
# 获取主要类别的点
self.clustered_points = clusterer.fit()
self.gps_points = clusterer.get_main_cluster(self.clustered_points)
# 获取统计信息并记录
stats = clusterer.get_cluster_stats(self.clustered_points)
self.logger.info(
f"聚类完成:主要类别包含 {stats['main_cluster_points']} 个点,"
f"噪声点 {stats['noise_points']}"
)
# 可视化聚类结果
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "1-Clustering")
return self.gps_points
def filter_time_group_overlap(self) -> pd.DataFrame:
"""过滤重叠的时间组"""
self.logger.info("开始过滤重叠时间组")
self.logger.info("开始过滤重叠时间组")
previous_points = self.gps_points.copy()
filter = TimeGroupOverlapFilter(
self.config.image_dir,
self.config.output_dir,
overlap_threshold=self.config.time_group_overlap_threshold
)
deleted_files = filter.filter_overlapping_groups(
time_threshold=self.config.time_group_interval
)
# 更新GPS点数据移除被删除的图像
self.gps_points = self.gps_points[~self.gps_points['file'].isin(
deleted_files)]
self.logger.info(f"重叠时间组过滤后剩余 {len(self.gps_points)} 个GPS点")
# 可视化过滤结果
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "2-Time Group Overlap")
return self.gps_points
# TODO 过滤算法还需要更新
def filter_points(self) -> pd.DataFrame:
"""过滤GPS点"""
self.logger.info("开始过滤GPS点")
filter = GPSFilter(self.config.output_dir)
# 过滤孤立点
previous_points = self.gps_points.copy()
self.logger.info(
f"开始过滤孤立点(距离阈值: {self.config.filter_distance_threshold}, "
f"最小邻居数: {self.config.filter_min_neighbors})"
)
self.gps_points = filter.filter_isolated_points(
self.gps_points,
self.config.filter_distance_threshold,
self.config.filter_min_neighbors,
)
self.logger.info(f"孤立点过滤后剩余 {len(self.gps_points)} 个GPS点")
# 可视化孤立点过滤结果
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "3-Isolated Points")
# # 过滤密集点
# previous_points = self.gps_points.copy()
# self.logger.info(
# f"开始过滤密集点(网格大小: {self.config.filter_grid_size}, "
# f"距离阈值: {self.config.filter_dense_distance_threshold})"
# )
# self.gps_points = filter.filter_dense_points(
# self.gps_points,
# grid_size=self.config.filter_grid_size,
# distance_threshold=self.config.filter_dense_distance_threshold,
# time_threshold=self.config.filter_time_threshold,
# )
# self.logger.info(f"密集点过滤后剩余 {len(self.gps_points)} 个GPS点")
# # 可视化密集点过滤结果
# self.visualizer.visualize_filter_step(
# self.gps_points, previous_points, "4-Dense Points")
return self.gps_points
def divide_grids(self) -> Dict[int, pd.DataFrame]:
"""划分网格"""
self.logger.info(f"开始划分网格 (重叠率: {self.config.grid_overlap})")
grid_divider = GridDivider(
overlap=self.config.grid_overlap,
output_dir=self.config.output_dir
)
grids = grid_divider.divide_grids(
self.gps_points, grid_size=self.config.grid_size
)
grid_points = grid_divider.assign_to_grids(self.gps_points, grids)
self.logger.info(f"成功划分为 {len(grid_points)} 个网格")
# 生成image_groups.txt文件
try:
groups_file = os.path.join(self.config.output_dir, "image_groups.txt")
self.logger.info(f"开始生成分组文件: {groups_file}")
with open(groups_file, 'w') as f:
for grid_idx, points_lt in grid_points.items():
# 使用ASCII字母作为组标识A, B, C...
group_letter = chr(65 + grid_idx) # 65是ASCII中'A'的编码
# 为每个网格中的图像写入分组信息
for point in points_lt:
f.write(f"{point['file']} {group_letter}\n")
self.logger.info(f"分组文件生成成功: {groups_file}")
except Exception as e:
self.logger.error(f"生成分组文件时发生错误: {str(e)}", exc_info=True)
raise
return grid_points
def copy_images(self, grid_points: Dict[int, pd.DataFrame]):
"""复制图像到目标文件夹"""
self.logger.info("开始复制图像文件")
self.logger.info("开始复制图像文件")
for grid_idx, points in grid_points.items():
output_dir = os.path.join(
self.config.output_dir, f"grid_{grid_idx + 1}", "project", "images"
)
os.makedirs(output_dir, exist_ok=True)
for point in tqdm(points, desc=f"复制网格 {grid_idx + 1} 的图像"):
src = os.path.join(self.config.image_dir, point["file"])
dst = os.path.join(output_dir, point["file"])
shutil.copy(src, dst)
self.logger.info(f"网格 {grid_idx + 1} 包含 {len(points)} 张图像")
def merge_tif(self, grid_points: Dict[int, pd.DataFrame]):
"""合并所有网格的影像产品"""
self.logger.info("开始合并所有影像产品")
merger = MergeTif(self.config.output_dir)
merger.merge_all_tifs(grid_points)
def merge_obj(self, grid_points: Dict[int, pd.DataFrame]):
"""合并所有网格的OBJ模型"""
self.logger.info("开始合并OBJ模型")
merger = MergeObj(self.config.output_dir)
merger.merge_grid_obj(grid_points)
def merge_ply(self, grid_points: Dict[int, pd.DataFrame]):
"""合并所有网格的PLY点云"""
self.logger.info("开始合并PLY点云")
merger = MergePly(self.config.output_dir)
merger.merge_grid_ply(grid_points)
def process(self):
"""执行完整的预处理流程"""
try:
self.extract_gps()
self.cluster()
# self.filter_time_group_overlap()
self.filter_points()
grid_points = self.divide_grids()
# self.copy_images(grid_points)
self.logger.info("预处理任务完成")
# self.odm_monitor.process_all_grids(grid_points)
# self.merge_tif(grid_points)
self.merge_ply(grid_points)
self.merge_obj(grid_points)
except Exception as e:
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
raise
if __name__ == "__main__":
# 创建配置
config = PreprocessConfig(
image_dir=r"E:\datasets\UAV\1009\project\images",
output_dir=r"G:\ODM_output\1009",
cluster_eps=0.01,
cluster_min_samples=5,
# 添加时间组重叠过滤参数
time_group_overlap_threshold=0.7,
time_group_interval=timedelta(minutes=5),
filter_distance_threshold=0.001,
filter_min_neighbors=6,
filter_grid_size=0.001,
filter_dense_distance_threshold=10,
filter_time_threshold=timedelta(minutes=5),
grid_size=300,
grid_overlap=0.1,
mode="重建模式",
)
# 创建处理器并执行
processor = ImagePreprocessor(config)
processor.process()

View File

@ -71,12 +71,13 @@ class MergeObj:
self.output_dir, self.output_dir,
f"grid_{grid_idx + 1}", f"grid_{grid_idx + 1}",
"project", "project",
"odm_texturing", "odm_texturing_25d",
"odm_textured_model_geo.obj" "odm_textured_model_geo.obj"
) )
if not os.path.exists(grid_obj): if not os.path.exists(grid_obj):
self.logger.warning(f"网格 {grid_idx + 1} 的OBJ文件不存在: {grid_obj}") self.logger.warning(
f"网格 {grid_idx + 1} 的OBJ文件不存在: {grid_obj}")
continue continue
if input_obj1 is None: if input_obj1 is None:
@ -84,7 +85,8 @@ class MergeObj:
self.logger.info(f"设置第一个输入OBJ: {input_obj1}") self.logger.info(f"设置第一个输入OBJ: {input_obj1}")
else: else:
input_obj2 = grid_obj input_obj2 = grid_obj
output_obj = os.path.join(self.output_dir, "merged_model.obj") output_obj = os.path.join(
self.output_dir, "merged_model.obj")
self.logger.info( self.logger.info(
f"开始合并第 {merge_count + 1} 次:\n" f"开始合并第 {merge_count + 1} 次:\n"
@ -107,3 +109,34 @@ class MergeObj:
except Exception as e: except Exception as e:
self.logger.error(f"OBJ模型合并过程中发生错误: {str(e)}", exc_info=True) self.logger.error(f"OBJ模型合并过程中发生错误: {str(e)}", exc_info=True)
raise raise
if __name__ == "__main__":
import sys
sys.path.append(os.path.dirname(
os.path.dirname(os.path.abspath(__file__))))
from utils.logger import setup_logger
import pandas as pd
# 设置输出目录和日志
output_dir = r"G:\ODM_output\1009"
setup_logger(output_dir)
# 构造测试用的grid_points字典
# 假设我们有两个网格每个网格包含一些GPS点的DataFrame
grid_points = {
0: pd.DataFrame({
'latitude': [39.9, 39.91],
'longitude': [116.3, 116.31],
'altitude': [100, 101]
}),
1: pd.DataFrame({
'latitude': [39.92, 39.93],
'longitude': [116.32, 116.33],
'altitude': [102, 103]
})
}
# 创建MergeObj实例并执行合并
merge_obj = MergeObj(output_dir)
merge_obj.merge_grid_obj(grid_points)

View File

@ -1,7 +1,7 @@
import os import os
import logging import logging
import numpy as np import numpy as np
from typing import Dict from typing import Dict, Tuple
import pandas as pd import pandas as pd
import open3d as o3d import open3d as o3d
@ -11,8 +11,51 @@ class MergePly:
self.output_dir = output_dir self.output_dir = output_dir
self.logger = logging.getLogger('UAV_Preprocess.MergePly') self.logger = logging.getLogger('UAV_Preprocess.MergePly')
def merge_two_plys(self, ply1_path: str, ply2_path: str, output_path: str): def read_corners_file(self, grid_idx: int) -> Tuple[float, float]:
"""合并两个PLY文件""" """读取角点文件并计算中心点坐标
角点文件格式xmin ymin xmax ymax
"""
corners_file = os.path.join(
self.output_dir,
f"grid_{grid_idx + 1}",
"project",
"odm_orthophoto",
"odm_orthophoto_corners.txt"
)
try:
if not os.path.exists(corners_file):
raise FileNotFoundError(f"角点文件不存在: {corners_file}")
# 读取角点文件
with open(corners_file, 'r') as f:
line = f.readline().strip()
if not line:
raise ValueError(f"角点文件为空: {corners_file}")
# 解析四个角点值xmin ymin xmax ymax
xmin, ymin, xmax, ymax = map(float, line.split())
# 计算中心点坐标
center_x = (xmin + xmax) / 2
center_y = (ymin + ymax) / 2
self.logger.info(
f"网格 {grid_idx + 1} 边界坐标: \n"
f"xmin={xmin:.2f}, ymin={ymin:.2f}\n"
f"xmax={xmax:.2f}, ymax={ymax:.2f}\n"
f"中心点: x={center_x:.2f}, y={center_y:.2f}"
)
return center_x, center_y
except Exception as e:
self.logger.error(f"读取角点文件时发生错误: {str(e)}", exc_info=True)
raise
def merge_two_plys(self, ply1_path: str, ply2_path: str, output_path: str,
center1: Tuple[float, float],
center2: Tuple[float, float]):
"""合并两个PLY文件使用中心点坐标进行对齐"""
try: try:
self.logger.info("开始合并PLY点云") self.logger.info("开始合并PLY点云")
self.logger.info(f"输入点云1: {ply1_path}") self.logger.info(f"输入点云1: {ply1_path}")
@ -30,15 +73,15 @@ class MergePly:
if pcd1 is None or pcd2 is None: if pcd1 is None or pcd2 is None:
raise ValueError("无法读取点云文件") raise ValueError("无法读取点云文件")
# 获取点云中心 # 计算平移向量(直接使用中心点坐标差)
center1 = pcd1.get_center() translation = np.array([
center2 = pcd2.get_center() center2[0] - center1[0], # x方向的平移
center2[1] - center1[1], # y方向的平移
0.0 # z方向不平移
])
# 计算平移向量 # 对第二个点云进行平移
translation_vector = center2 - center1 pcd2.translate(translation*100)
# 对齐点云
pcd2.translate(translation_vector)
# 合并点云 # 合并点云
combined_pcd = pcd1 + pcd2 combined_pcd = pcd1 + pcd2
@ -53,56 +96,93 @@ class MergePly:
self.logger.error(f"合并PLY点云时发生错误: {str(e)}", exc_info=True) self.logger.error(f"合并PLY点云时发生错误: {str(e)}", exc_info=True)
raise raise
def merge_grid_ply(self, grid_points: Dict[int, pd.DataFrame]): def merge_grid_ply(self, grid_points: Dict[int, list]):
"""合并所有网格的PLY点云""" """合并所有网格的PLY点云,以第一个网格为参考点"""
self.logger.info("开始合并所有网格的PLY点云") self.logger.info("开始合并所有网格的PLY点云")
if len(grid_points) < 2: if len(grid_points) < 2:
self.logger.info("只有一个网格,无需合并") self.logger.info("只有一个网格,无需合并")
return return
input_ply1, input_ply2 = None, None
merge_count = 0
try: try:
for grid_idx, points in grid_points.items(): # 获取网格索引列表并排序
grid_ply = os.path.join( grid_indices = sorted(grid_points.keys())
# 读取第一个网格作为参考网格
ref_idx = grid_indices[0]
ref_ply = os.path.join(
self.output_dir,
f"grid_{ref_idx + 1}",
"project",
"odm_filterpoints",
"point_cloud.ply"
)
if not os.path.exists(ref_ply):
raise FileNotFoundError(f"参考网格的PLY文件不存在: {ref_ply}")
# 获取参考网格的中心点坐标
ref_center = self.read_corners_file(ref_idx)
self.logger.info(f"参考网格(grid_{ref_idx + 1})中心点: x={ref_center[0]:.2f}, y={ref_center[1]:.2f}")
# 将参考点云复制到输出位置作为初始合并结果
output_ply = os.path.join(self.output_dir, "merged_pointcloud.ply")
import shutil
shutil.copy2(ref_ply, output_ply)
# 依次处理其他网格
for grid_idx in grid_indices[1:]:
current_ply = os.path.join(
self.output_dir, self.output_dir,
f"grid_{grid_idx + 1}", f"grid_{grid_idx + 1}",
"project", "project",
"odm_georeferencing", "odm_filterpoints",
"odm_georeferenced_model.ply" "point_cloud.ply"
) )
if not os.path.exists(grid_ply): if not os.path.exists(current_ply):
self.logger.warning(f"网格 {grid_idx + 1} 的PLY文件不存在: {grid_ply}") self.logger.warning(f"网格 {grid_idx + 1} 的PLY文件不存在: {current_ply}")
continue continue
if input_ply1 is None: # 读取当前网格的中心点坐标
input_ply1 = grid_ply current_center = self.read_corners_file(grid_idx)
self.logger.info(f"设置第一个输入PLY: {input_ply1}")
else:
input_ply2 = grid_ply
output_ply = os.path.join(self.output_dir, "merged_pointcloud.ply")
self.logger.info( self.logger.info(
f"开始合并第 {merge_count + 1} 次:\n" f"处理网格 {grid_idx + 1}:\n"
f"输入1: {input_ply1}\n" f"合并点云: {current_ply}\n"
f"输入2: {input_ply2}\n" f"当前网格中心点: x={current_center[0]:.2f}, y={current_center[1]:.2f}"
f"输出: {output_ply}"
) )
self.merge_two_plys(input_ply1, input_ply2, output_ply) # 合并点云,始终使用第一个网格的中心点作为参考点
merge_count += 1 self.merge_two_plys(
output_ply, # 当前合并结果
input_ply1 = output_ply current_ply, # 要合并的新点云
input_ply2 = None output_ply, # 覆盖原有的合并结果
ref_center, # 参考网格中心点(始终不变)
self.logger.info( current_center # 当前网格中心点
f"PLY点云合并完成共执行 {merge_count} 次合并,"
f"最终输出文件: {input_ply1}"
) )
self.logger.info(f"PLY点云合并完成最终输出文件: {output_ply}")
except Exception as e: except Exception as e:
self.logger.error(f"PLY点云合并过程中发生错误: {str(e)}", exc_info=True) self.logger.error(f"PLY点云合并过程中发生错误: {str(e)}", exc_info=True)
raise raise
if __name__ == "__main__":
from utils.logger import setup_logger
import open3d as o3d
# 设置输出目录和日志
output_dir = r"G:\ODM_output\1009"
setup_logger(output_dir)
# 构造测试用的grid_points字典
grid_points = {
0: [], # 不再需要GPS点信息
1: []
}
# 创建MergePly实例并执行合并
merge_ply = MergePly(output_dir)
merge_ply.merge_grid_ply(grid_points)

View File

@ -3,8 +3,6 @@ import logging
import os import os
from typing import Dict from typing import Dict
import pandas as pd import pandas as pd
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
class MergeTif: class MergeTif:
@ -53,7 +51,8 @@ class MergeTif:
) )
self.logger.info("开始执行影像拼接...") self.logger.info("开始执行影像拼接...")
result = gdal.Warp(output_tif, [input_tif1, input_tif2], options=warp_options) result = gdal.Warp(
output_tif, [input_tif1, input_tif2], options=warp_options)
if result is None: if result is None:
error_msg = "影像拼接失败" error_msg = "影像拼接失败"
@ -100,7 +99,8 @@ class MergeTif:
) )
if not os.path.exists(grid_tif): if not os.path.exists(grid_tif):
self.logger.warning(f"网格 {grid_idx + 1}{product_name}不存在: {grid_tif}") self.logger.warning(
f"网格 {grid_idx + 1}{product_name}不存在: {grid_tif}")
continue continue
if input_tif1 is None: if input_tif1 is None:
@ -108,7 +108,8 @@ class MergeTif:
self.logger.info(f"设置第一个输入{product_name}: {input_tif1}") self.logger.info(f"设置第一个输入{product_name}: {input_tif1}")
else: else:
input_tif2 = grid_tif input_tif2 = grid_tif
output_tif = os.path.join(self.output_dir, f"merged_{product_info['output']}") output_tif = os.path.join(
self.output_dir, f"merged_{product_info['output']}")
self.logger.info( self.logger.info(
f"开始合并{product_name}{merge_count + 1} 次:\n" f"开始合并{product_name}{merge_count + 1} 次:\n"
@ -129,7 +130,8 @@ class MergeTif:
) )
except Exception as e: except Exception as e:
self.logger.error(f"{product_name}合并过程中发生错误: {str(e)}", exc_info=True) self.logger.error(
f"{product_name}合并过程中发生错误: {str(e)}", exc_info=True)
raise raise
def merge_all_tifs(self, grid_points: Dict[int, pd.DataFrame]): def merge_all_tifs(self, grid_points: Dict[int, pd.DataFrame]):
@ -157,7 +159,7 @@ class MergeTif:
] ]
for product in products: for product in products:
self.merge_grid_product(grid_points, product) self.merge_grid_tif(grid_points, product)
self.logger.info("所有产品合并完成") self.logger.info("所有产品合并完成")
except Exception as e: except Exception as e:
@ -166,17 +168,31 @@ class MergeTif:
if __name__ == "__main__": if __name__ == "__main__":
import sys
sys.path.append(os.path.dirname(
os.path.dirname(os.path.abspath(__file__))))
from utils.logger import setup_logger from utils.logger import setup_logger
import pandas as pd
# 定义影像路径 # 设置输出目录和日志
input_tif1 = r"G:\ODM_output\20241024100834\output\grid_1\project\odm_orthophoto\odm_orthophoto.tif" output_dir = r"G:\ODM_output\1009"
input_tif2 = r"G:\ODM_output\20241024100834\output\grid_2\project\odm_orthophoto\odm_orthophoto.tif"
output_tif = r"G:\ODM_output\20241024100834\output\merged_orthophoto.tif"
# 设置日志
output_dir = r"E:\studio2\ODM_pro\test"
setup_logger(output_dir) setup_logger(output_dir)
# 执行拼接 # 构造测试用的grid_points字典
# 假设我们有两个网格每个网格包含一些GPS点的DataFrame
grid_points = {
0: pd.DataFrame({
'latitude': [39.9, 39.91],
'longitude': [116.3, 116.31],
'altitude': [100, 101]
}),
1: pd.DataFrame({
'latitude': [39.92, 39.93],
'longitude': [116.32, 116.33],
'altitude': [102, 103]
})
}
# 创建MergeTif实例并执行合并
merge_tif = MergeTif(output_dir) merge_tif = MergeTif(output_dir)
merge_tif.merge_two_tifs(input_tif1, input_tif2, output_tif) merge_tif.merge_all_tifs(grid_points)

View File

@ -50,12 +50,14 @@ class ODMProcessMonitor:
stdout, stderr = result.stdout.decode( stdout, stderr = result.stdout.decode(
'utf-8'), result.stderr.decode('utf-8') 'utf-8'), result.stderr.decode('utf-8')
self.logger.info(f"==========stdout==========: {stdout}")
self.logger.error(f"==========stderr==========: {stderr}")
# 检查执行结果 # 检查执行结果
if self._check_success(grid_dir): if self._check_success(grid_dir):
self.logger.info(stdout, stderr)
self.logger.info(f"网格 {grid_idx + 1} 处理成功") self.logger.info(f"网格 {grid_idx + 1} 处理成功")
return True, "" return True, ""
else:
self.logger.error(f"网格 {grid_idx + 1} 处理失败")
return False, f"网格 {grid_idx + 1} 处理失败" return False, f"网格 {grid_idx + 1} 处理失败"
def process_all_grids(self, grid_points: Dict[int, pd.DataFrame]): def process_all_grids(self, grid_points: Dict[int, pd.DataFrame]):