import os import logging import subprocess from typing import Dict, Tuple import pandas as pd import numpy as np from osgeo import gdal class NotOverlapError(Exception): """图像重叠度不足异常""" pass class DockerNotRunError(Exception): """Docker未启动异常""" pass class DockerShareError(Exception): """Docker目录共享异常""" pass class ODMProcessMonitor: """ODM处理监控器""" def __init__(self, output_dir: str, mode: str = "快拼模式"): self.output_dir = output_dir self.logger = logging.getLogger('UAV_Preprocess.ODMMonitor') self.mode = mode def _check_success(self, grid_dir: str) -> bool: """检查ODM是否执行成功 检查项目: 1. 必要的文件夹是否存在 2. 正射影像是否生成且有效 3. 正射影像文件大小是否正常 """ # 检查必要文件夹 success_markers = ['odm_orthophoto'] if self.mode != "快拼模式": success_markers.extend(['odm_texturing', 'odm_georeferencing']) if not all(os.path.exists(os.path.join(grid_dir, 'project', marker)) for marker in success_markers): self.logger.error("必要的文件夹未生成") return False # 检查正射影像文件 ortho_path = os.path.join(grid_dir, 'project', 'odm_orthophoto', 'odm_orthophoto.original.tif') if not os.path.exists(ortho_path): self.logger.error("正射影像文件未生成") return False # 检查文件大小 file_size_mb = os.path.getsize(ortho_path) / (1024 * 1024) # 转换为MB if file_size_mb < 1: self.logger.error(f"正射影像文件过小: {file_size_mb:.2f}MB") return False try: # 打开影像文件 ds = gdal.Open(ortho_path) if ds is None: self.logger.error("无法打开正射影像文件") return False # 读取第一个波段 band = ds.GetRasterBand(1) # 获取统计信息 stats = band.GetStatistics(False, True) if stats is None: self.logger.error("无法获取影像统计信息") return False min_val, max_val, mean, std = stats # 计算空值比例 no_data_value = band.GetNoDataValue() array = band.ReadAsArray() if no_data_value is not None: no_data_ratio = np.sum(array == no_data_value) / array.size else: no_data_ratio = 0 # 检查空值比例是否过高(超过50%) if no_data_ratio > 0.5: self.logger.error(f"正射影像空值比例过高: {no_data_ratio:.2%}") return False # 检查影像是否全黑或全白 if max_val - min_val < 1: self.logger.error("正射影像可能无效:像素值范围过小") return False ds = None # 关闭数据集 return True except Exception as e: self.logger.error(f"检查正射影像时发生错误: {str(e)}") return False def run_odm_with_monitor(self, grid_dir: str, grid_id: tuple, fast_mode: bool = True, produce_dem: bool = False) -> Tuple[bool, str]: """运行ODM命令""" if produce_dem and fast_mode: self.logger.error("快拼模式下无法生成DEM,请调整生产参数") return False, "快拼模式下无法生成DEM,请调整生产参数" self.logger.info(f"开始处理网格 ({grid_id[0]},{grid_id[1]})") max_retries = 3 current_try = 0 use_lowest_quality = True # 初始使用lowest quality while current_try < max_retries: current_try += 1 self.logger.info(f"第 {current_try} 次尝试处理网格 ({grid_id[0]},{grid_id[1]})") try: # 构建Docker命令 grid_dir = grid_dir[0].lower()+grid_dir[1:].replace('\\', '/') docker_command = ( f"docker run --gpus all -ti --rm " f"-v {grid_dir}:/datasets " f"opendronemap/odm:gpu " f"--project-path /datasets project " f"--max-concurrency 15 " f"--force-gps " ) # 根据是否使用lowest quality添加参数 if use_lowest_quality: docker_command += f"--feature-quality lowest " docker_command += f"--orthophoto-resolution 10 " if produce_dem: docker_command += ( f"--dsm " f"--dtm " ) if fast_mode: docker_command += ( f"--fast-orthophoto " f"--skip-3dmodel " ) docker_command += "--rerun-all" self.logger.info(docker_command) result = subprocess.run( docker_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = result.stdout.decode( 'utf-8'), result.stderr.decode('utf-8') self.logger.error(f"==========stderr==========: {stderr}") # 检查是否有错误 stdout_lines = stdout.strip().split('\n') last_lines = stdout_lines[-10:] if len(stdout_lines) > 10 else stdout_lines # 检查Docker是否未运行 if any("docker not run" in line.lower() for line in last_lines) or \ any("docker daemon" in line.lower() for line in last_lines) or \ any("cannot connect to the docker daemon" in line.lower() for line in last_lines): raise DockerNotRunError("Docker服务未启动") # 检查目录共享问题 if any("not share" in line.lower() for line in last_lines) or \ any("permission denied" in line.lower() for line in last_lines) or \ any("access is denied" in line.lower() for line in last_lines): raise DockerShareError("Docker无法访问目录") # 检查是否有重叠度不足错误 if any("not overlap" in line.lower() for line in last_lines): raise NotOverlapError("检测到图像重叠度不足错误") # 检查执行结果 if self._check_success(grid_dir): self.logger.info(f"网格 ({grid_id[0]},{grid_id[1]}) 处理成功") return True, "" if current_try < max_retries: self.logger.warning(f"网格处理失败,准备第 {current_try + 1} 次重试") else: self.logger.error(f"网格 ({grid_id[0]},{grid_id[1]}) 处理失败,已达到最大重试次数") return False, f"网格 ({grid_id[0]},{grid_id[1]}) 处理失败,已重试{max_retries}次" except NotOverlapError: if use_lowest_quality: self.logger.warning("检测到'not overlap'错误,移除lowest quality参数后重试") use_lowest_quality = False continue else: self.logger.error("即使移除lowest quality参数后仍然出现'not overlap'错误") return False, "图像重叠度不足" except DockerNotRunError: self.logger.error("Docker服务未启动") return False, "Docker没有启动,请启动Docker" except DockerShareError: self.logger.error("Docker无法访问目录") return False, "Docker无法访问数据目录或输出目录,请检查目录权限和共享设置" return False, f"网格 ({grid_id[0]},{grid_id[1]}) 处理失败" def process_all_grids(self, grid_points: Dict[tuple, pd.DataFrame], produce_dem: bool) -> Dict[tuple, pd.DataFrame]: """处理所有网格 Returns: Dict[tuple, pd.DataFrame]: 成功处理的网格点数据字典 """ self.logger.info("开始执行网格处理") successful_grid_points = {} failed_grids = [] for grid_id, points in grid_points.items(): grid_dir = os.path.join( self.output_dir, f'grid_{grid_id[0]}_{grid_id[1]}' ) try: success, error_msg = self.run_odm_with_monitor( grid_dir=grid_dir, grid_id=grid_id, fast_mode=(self.mode == "快拼模式"), produce_dem=produce_dem ) if success: successful_grid_points[grid_id] = points else: self.logger.error(f"网格 ({grid_id[0]},{grid_id[1]}) 处理失败: {error_msg}") failed_grids.append((grid_id, error_msg)) except Exception as e: error_msg = str(e) self.logger.error(f"处理网格 ({grid_id[0]},{grid_id[1]}) 时发生异常: {error_msg}") failed_grids.append((grid_id, error_msg)) # 汇总处理结果 total_grids = len(grid_points) failed_count = len(failed_grids) success_count = len(successful_grid_points) self.logger.info(f"网格处理完成。总计: {total_grids}, 成功: {success_count}, 失败: {failed_count}") if failed_grids: self.logger.error("失败的网格:") for grid_id, error_msg in failed_grids: self.logger.error(f"网格 ({grid_id[0]},{grid_id[1]}): {error_msg}") if len(successful_grid_points) == 0: raise Exception("所有网格处理都失败,无法继续处理") return successful_grid_points