import os import matplotlib.pyplot as plt import pandas as pd import logging from typing import Optional class FilterVisualizer: """过滤结果可视化器""" def __init__(self, output_dir: str): """ 初始化可视化器 Args: output_dir: 输出目录路径 """ self.output_dir = output_dir self.logger = logging.getLogger('UAV_Preprocess.Visualizer') def visualize_filter_step(self, current_points: pd.DataFrame, previous_points: pd.DataFrame, step_name: str, save_name: Optional[str] = None): """ 可视化单个过滤步骤的结果 Args: current_points: 当前步骤后的点 previous_points: 上一步骤的点 step_name: 步骤名称 save_name: 保存文件名,默认为step_name """ self.logger.info(f"开始生成{step_name}的可视化结果") # 找出被过滤掉的点 filtered_files = set(previous_points['file']) - set(current_points['file']) filtered_points = previous_points[previous_points['file'].isin(filtered_files)] # 创建图形 plt.figure(figsize=(20, 16)) # 绘制保留的点 plt.scatter(current_points['lon'], current_points['lat'], color='blue', label='Retained Points', alpha=0.6, s=50) # 绘制被过滤的点 if not filtered_points.empty: plt.scatter(filtered_points['lon'], filtered_points['lat'], color='red', marker='x', label='Filtered Points', alpha=0.6, s=100) # 设置图形属性 plt.title(f"GPS Points After {step_name}\n" f"(Filtered: {len(filtered_points)}, Retained: {len(current_points)})", fontsize=14) plt.xlabel("Longitude", fontsize=12) plt.ylabel("Latitude", fontsize=12) plt.grid(True) # 添加统计信息 stats_text = ( f"Original Points: {len(previous_points)}\n" f"Filtered Points: {len(filtered_points)}\n" f"Remaining Points: {len(current_points)}\n" f"Filter Rate: {len(filtered_points)/len(previous_points)*100:.1f}%" ) plt.figtext(0.02, 0.02, stats_text, fontsize=10, bbox=dict(facecolor='white', alpha=0.8)) # 添加图例 plt.legend(loc='upper right', fontsize=10) # 调整布局 plt.tight_layout() # 保存图形 save_name = save_name or step_name.lower().replace(' ', '_') save_path = os.path.join(self.output_dir, 'filter_imgs', f'filter_{save_name}.png') plt.savefig(save_path, dpi=300, bbox_inches='tight') plt.close() self.logger.info( f"{step_name}过滤可视化结果已保存至 {save_path}\n" f"过滤掉 {len(filtered_points)} 个点," f"保留 {len(current_points)} 个点," f"过滤率 {len(filtered_points)/len(previous_points)*100:.1f}%" ) if __name__ == '__main__': # 测试代码 import numpy as np from datetime import datetime # 创建测试数据 np.random.seed(42) n_points = 1000 # 生成随机点 test_data = pd.DataFrame({ 'lon': np.random.uniform(120, 121, n_points), 'lat': np.random.uniform(30, 31, n_points), 'file': [f'img_{i}.jpg' for i in range(n_points)], 'date': [datetime.now() for _ in range(n_points)] }) # 随机选择点作为过滤后的结果 filtered_data = test_data.sample(n=800) # 测试可视化 visualizer = FilterVisualizer('test_output') os.makedirs('test_output', exist_ok=True) visualizer.visualize_filter_step( filtered_data, test_data, "Test Filter" )