from osgeo import gdal import logging import os from typing import Dict import pandas as pd import time import shutil class MergeTif: def __init__(self, output_dir: str): self.output_dir = output_dir self.logger = logging.getLogger('UAV_Preprocess.MergeTif') def merge_two_tifs(self, input_tif1: str, input_tif2: str, output_tif: str): """合并两张TIF影像""" try: self.logger.info("开始合并TIF影像") self.logger.info(f"输入影像1: {input_tif1}") self.logger.info(f"输入影像2: {input_tif2}") self.logger.info(f"输出影像: {output_tif}") # 检查输入文件是否存在 if not os.path.exists(input_tif1) or not os.path.exists(input_tif2): error_msg = "输入影像文件不存在" self.logger.error(error_msg) raise FileNotFoundError(error_msg) # 打开影像,检查投影是否一致 datasets = [] try: for tif in [input_tif1, input_tif2]: ds = gdal.Open(tif) if ds is None: error_msg = f"无法打开影像文件: {tif}" self.logger.error(error_msg) raise ValueError(error_msg) datasets.append(ds) projections = [ds.GetProjection() for ds in datasets] self.logger.debug(f"影像1投影: {projections[0]}") self.logger.debug(f"影像2投影: {projections[1]}") # 检查投影是否一致 if len(set(projections)) != 1: error_msg = "影像的投影不一致,请先进行重投影!" self.logger.error(error_msg) raise ValueError(error_msg) # 如果输出文件已存在,先删除 if os.path.exists(output_tif): try: os.remove(output_tif) except Exception as e: self.logger.warning(f"删除已存在的输出文件失败: {str(e)}") # 生成一个新的输出文件名 base, ext = os.path.splitext(output_tif) output_tif = f"{base}_{int(time.time())}{ext}" self.logger.info(f"使用新的输出文件名: {output_tif}") # 创建 GDAL Warp 选项 warp_options = gdal.WarpOptions( format="GTiff", resampleAlg="average", srcNodata=0, dstNodata=0, multithread=True ) self.logger.info("开始执行影像拼接...") result = gdal.Warp(output_tif, datasets, options=warp_options) if result is None: error_msg = "影像拼接失败" self.logger.error(error_msg) raise RuntimeError(error_msg) # 获取输出影像的基本信息 output_dataset = gdal.Open(output_tif) if output_dataset: width = output_dataset.RasterXSize height = output_dataset.RasterYSize bands = output_dataset.RasterCount self.logger.info( f"拼接完成,输出影像大小: {width}x{height},波段数: {bands}") output_dataset = None # 显式关闭数据集 self.logger.info(f"影像拼接成功,输出文件保存至: {output_tif}") finally: # 确保所有数据集都被正确关闭 for ds in datasets: if ds: ds = None result = None except Exception as e: self.logger.error(f"影像拼接过程中发生错误: {str(e)}", exc_info=True) raise def merge_grid_tif(self, grid_points: Dict[tuple, pd.DataFrame], product_info: dict): """合并指定产品的所有网格""" product_name = product_info['name'] product_path = product_info['path'] filename = product_info['filename'] self.logger.info(f"开始合并{product_name}") input_tif1, input_tif2 = None, None merge_count = 0 temp_files = [] try: for grid_id, points in grid_points.items(): grid_tif = os.path.join( self.output_dir, f"grid_{grid_id[0]}_{grid_id[1]}", "project", product_path, filename ) if not os.path.exists(grid_tif): self.logger.warning( f"网格 ({grid_id[0]},{grid_id[1]}) 的{product_name}不存在: {grid_tif}") continue # 如果文件大于600MB,则不使用original文件 file_size_mb = os.path.getsize( grid_tif) / (1024 * 1024) # 转换为MB if file_size_mb > 600: file_name = file_name.replace(".original", "") grid_tif = os.path.join( self.output_dir, f"grid_{grid_id[0]}_{grid_id[1]}", "project", product_path, file_name ) if input_tif1 is None: input_tif1 = grid_tif self.logger.info(f"设置第一个输入{product_name}: {input_tif1}") else: input_tif2 = grid_tif # 生成带时间戳的临时输出文件名 temp_output = os.path.join( self.output_dir, f"temp_merged_{int(time.time())}_{product_info['output']}" ) self.logger.info( f"开始合并{product_name}第 {merge_count + 1} 次:\n" f"输入1: {input_tif1}\n" f"输入2: {input_tif2}\n" f"输出: {temp_output}" ) self.merge_two_tifs(input_tif1, input_tif2, temp_output) merge_count += 1 input_tif1 = temp_output input_tif2 = None temp_files.append(temp_output) final_output = os.path.join( self.output_dir, product_info['output']) shutil.copy2(input_tif1, final_output) # 清理所有临时文件 for temp_file in temp_files: try: os.remove(temp_file) except Exception as e: self.logger.warning(f"删除临时文件失败: {str(e)}") self.logger.info( f"{product_name}合并完成,共执行 {merge_count} 次合并," f"最终输出文件: {final_output}" ) except Exception as e: self.logger.error( f"{product_name}合并过程中发生错误: {str(e)}", exc_info=True) raise def merge_all_tifs(self, grid_points: Dict[tuple, pd.DataFrame], produce_dem: bool): """合并所有产品(正射影像、DSM和DTM)""" try: products = [ { 'name': '正射影像', 'path': 'odm_orthophoto', 'filename': 'odm_orthophoto.original.tif', 'output': 'orthophoto.tif' }, ] if produce_dem: products.append( { 'name': 'DSM', 'path': 'odm_dem', 'filename': 'dsm.original.tif', 'output': 'dsm.tif' } ) products.append( { 'name': 'DTM', 'path': 'odm_dem', 'filename': 'dtm.original.tif', 'output': 'dtm.tif' } ) for product in products: self.merge_grid_tif(grid_points, product) self.logger.info("所有产品合并完成") except Exception as e: self.logger.error(f"产品合并过程中发生错误: {str(e)}", exc_info=True) raise if __name__ == "__main__": import sys sys.path.append(os.path.dirname( os.path.dirname(os.path.abspath(__file__)))) from utils.logger import setup_logger import pandas as pd # 设置输出目录和日志 output_dir = r"G:\ODM_output\1009" setup_logger(output_dir) # 构造测试用的grid_points字典 # 假设我们有两个网格,每个网格包含一些GPS点的DataFrame grid_points = { (0, 0): pd.DataFrame({ 'latitude': [39.9, 39.91], 'longitude': [116.3, 116.31], 'altitude': [100, 101] }), (0, 1): pd.DataFrame({ 'latitude': [39.92, 39.93], 'longitude': [116.32, 116.33], 'altitude': [102, 103] }) } # 创建MergeTif实例并执行合并 merge_tif = MergeTif(output_dir) merge_tif.merge_all_tifs(grid_points)