import csv import numpy as np import matplotlib.pyplot as plt import math from shapely.geometry import box, MultiPoint from shapely.ops import unary_union from scipy.spatial import cKDTree from utils.gps_extractor import GPSExtractor # ---------------------- overlap 截断为不超过 10% ---------------------- def clamp_overlap(overlap): if overlap < 0: return 0.0 elif overlap > 0.1: return 0.1 else: return overlap # ====================== 1) 生成可用矩形并记录其覆盖点集 ====================== def generate_rectangles_with_point_indices(points, w, h, overlap=0.1, min_points=800): """ 在 bounding box 内,以 (w, h) + overlap 布置网格,生成所有矩形。 过滤:只保留"矩形内点数 >= min_points"的矩形。 返回: rect_info_list: list of (rect_polygon, covered_indices) - rect_polygon: Shapely Polygon - covered_indices: 一个 set,表示该矩形覆盖的所有点索引 """ overlap = clamp_overlap(overlap) if len(points) == 0: return [] minx, miny = np.min(points, axis=0) maxx, maxy = np.max(points, axis=0) # 特殊情况:只有一个点或非常小范围 -> 很难满足 800 点 if abs(maxx - minx) < 1e-15 and abs(maxy - miny) < 1e-15: return [] # 步长 step_x = w * (1 - overlap) step_y = h * (1 - overlap) x_coords = np.arange(minx, maxx + step_x, step_x) y_coords = np.arange(miny, maxy + step_y, step_y) # 建立 KDTree,加速查找 tree = cKDTree(points) rect_info_list = [] for x in x_coords: for y in y_coords: rect_poly = box(x, y, x + w, y + h) rx_min, ry_min, rx_max, ry_max = rect_poly.bounds cx = (rx_min + rx_max) / 2 cy = (ry_min + ry_max) / 2 r = math.sqrt((rx_max - rx_min) ** 2 + (ry_max - ry_min) ** 2) / 2 candidate_ids = tree.query_ball_point([cx, cy], r) if not candidate_ids: continue covered_set = set() for idx_pt in candidate_ids: px, py = points[idx_pt] if rx_min <= px <= rx_max and ry_min <= py <= ry_max: covered_set.add(idx_pt) # 如果覆盖的点数不足 min_points,就不保留 if len(covered_set) < min_points: continue rect_info_list.append((rect_poly, covered_set)) return rect_info_list # ====================== 2) 贪心算法选取子集覆盖所有点 ====================== def cover_all_points_greedy(points, rect_info_list): """ 给定所有点 points 以及 "可用矩形+覆盖点集合" rect_info_list, 要求: - 选出若干矩形,使得所有点都被覆盖 (每个点至少属于1个选中矩形) - 最终并集面积最小 (做近似贪心) 返回: chosen_rects: 最终选出的矩形列表 (每个是 shapely Polygon) """ n = len(points) all_indices = set(range(n)) # 所有点的索引 uncovered = set(all_indices) # 尚未被覆盖的点索引 chosen_rects = [] union_polygon = None # 当前已选矩形的并集 # 如果没有任何矩形可用,就直接失败 if not rect_info_list: return [] # 为了在贪心过程中快速评估"新矩形带来的额外并集面积", # 我们每次选择矩形后更新 union_polygon,然后比较 union_polygon.union(new_rect).area - union_polygon.area # 但 union_polygon 初始为 None while uncovered: best_gain = 0 best_new_area = float('inf') best_rect = None best_covered_new = set() for rect_poly, covered_set in rect_info_list: # 计算能覆盖多少"尚未覆盖"的点 newly_covered = uncovered.intersection(covered_set) if not newly_covered: continue # 计算额外增加的并集面积 if union_polygon is None: # 第一次选,union_polygon 为空 => new_area = rect_poly.area new_area = rect_poly.area area_increase = new_area else: # 计算 union_polygon ∪ rect_poly 的面积 test_union = union_polygon.union(rect_poly) new_area = test_union.area area_increase = new_area - union_polygon.area # 贪心策略:最大化 (覆盖点数量) / (面积增量) # 或者 equivalently, (覆盖点数量) 多、(面积增量) 小 都是好 ratio = len(newly_covered) / max(area_increase, 1e-12) # 我们要找到 ratio 最大的那个 if ratio > best_gain: best_gain = ratio best_new_area = area_increase best_rect = rect_poly best_covered_new = newly_covered if best_rect is None: # 没有可选的矩形能覆盖任何剩余点 => 失败 (无法覆盖所有点) return [] # 选中 best_rect chosen_rects.append(best_rect) uncovered -= best_covered_new # 更新并集 if union_polygon is None: union_polygon = best_rect else: union_polygon = union_polygon.union(best_rect) return chosen_rects # ====================== 3) 主流程: 离散搜索 (w,h) + 贪心覆盖 ====================== def find_optimal_rectangles_cover_all_points( points, base_w, base_h, overlap=0.1, steps=5, min_points=800 ): """ 在 [0.5*base_w,1.5*base_w] x [0.5*base_h,1.5*base_h] 的离散区间枚举 (w,h), - 生成可用矩形(≥800 点)的列表 - 用贪心算法选出子集来覆盖所有点 - 计算选中矩形的并集面积 选出面积最小的方案并返回 """ overlap = clamp_overlap(overlap) n = len(points) if n == 0: return [], (base_w, base_h), 0.0 # 没有点就不用覆盖了 w_candidates = np.linspace(0.3 * base_w, 2 * base_w, steps) h_candidates = np.linspace(0.3 * base_h, 2 * base_h, steps) best_rects = [] best_area = float('inf') best_w, best_h = base_w, base_h for w in w_candidates: for h in h_candidates: rect_info_list = generate_rectangles_with_point_indices(points, w, h, overlap, min_points) if not rect_info_list: # 说明没有任何矩形能达到 "≥800点" continue # 用贪心覆盖所有点 chosen_rects = cover_all_points_greedy(points, rect_info_list) if not chosen_rects: # 无法覆盖所有点 continue # 计算并集面积 union_poly = unary_union(chosen_rects) area_covered = union_poly.area if area_covered < best_area: best_area = area_covered best_rects = chosen_rects best_w, best_h = w, h return best_rects, (best_w, best_h), best_area # ====================== 4) 读取 CSV + 可视化 ====================== def plot_image_points_cover_all_min_area( image_dir, # 新参数:图片文件夹路径 base_rect_width=0.001, base_rect_height=0.001, overlap=0.1, steps=5, min_points=800 ): """ 从图片文件夹读取GPS坐标: 1) 使用 GPSExtractor 从图片中提取GPS坐标 2) 在 [0.5*base_w,1.5*base_w] x [0.5*base_h,1.5*base_h] 离散搜索 (w,h) 3) 对每个 (w,h), 先生成所有"含≥800点"的矩形 => 再用贪心覆盖所有点 => 计算并集面积 4) 最小并集面积的方案即近似最优解 5) 最终用该方案可视化 """ overlap = clamp_overlap(overlap) # 使用 GPSExtractor 读取图片GPS坐标 extractor = GPSExtractor(image_dir) gps_df = extractor.extract_all_gps() if gps_df.empty: print("未能从图片中提取到GPS坐标。") return points = np.column_stack((gps_df['lon'], gps_df['lat'])) # (N, 2), [x=lon, y=lat] n = len(points) if n == 0: print("No points extracted from images.") return # 贪心 + 离散搜索 chosen_rects, (best_w, best_h), best_area = find_optimal_rectangles_cover_all_points( points, base_w=base_rect_width, base_h=base_rect_height, overlap=overlap, steps=steps, min_points=min_points ) if not chosen_rects: print(f"无法找到满足 '每个矩形≥{min_points}点' 且覆盖所有点 的方案,试着调大尺寸/步数/overlap。") return # 可视化 plt.figure(figsize=(10, 8)) # 画点 plt.scatter(points[:, 0], points[:, 1], c='red', s=10, label='Points') # 画矩形 for i, rect in enumerate(chosen_rects): if rect.is_empty: continue x, y = rect.exterior.xy plt.fill(x, y, edgecolor='green', fill=False, alpha=0.3, label='Chosen Rectangles' if i == 0 else "") plt.title( f"Cover All Points, Each Rect≥{min_points} pts, Minimal Union Area\n" f"base=({base_rect_width:.6f} x {base_rect_height:.6f}), overlap≤{overlap}, steps={steps}\n" f"best (w,h)=({best_w:.6f},{best_h:.6f}), union area={best_area:.6f}, #rect={len(chosen_rects)}" ) plt.xlabel("Longitude") plt.ylabel("Latitude") plt.legend() plt.grid(True) plt.show() # ------------------ 测试入口 ------------------ if __name__ == "__main__": image_dir = r"C:\datasets\134\code\images" # 替换为你的图片文件夹路径 plot_image_points_cover_all_min_area( image_dir, base_rect_width=0.01, base_rect_height=0.01, overlap=0.05, # 会被截断到 0.1 steps=40, min_points=100 )