import os import time import logging import subprocess from typing import Dict, Tuple import pandas as pd import numpy as np from osgeo import gdal class NotOverlapError(Exception): """图像重叠度不足异常""" pass class ODMProcessMonitor: """ODM处理监控器""" def __init__(self, output_dir: str, mode: str = "快拼模式"): self.output_dir = output_dir self.logger = logging.getLogger('UAV_Preprocess.ODMMonitor') self.mode = mode def _check_success(self, grid_dir: str) -> bool: """检查ODM是否执行成功 检查项目: 1. 必要的文件夹和文件是否存在 2. 产品文件是否有效 """ project_dir = os.path.join(grid_dir, 'project') # 根据不同模式检查不同的产品 if self.mode == "快拼模式": # 只检查正射影像 # if not self._check_orthophoto(project_dir): # return False pass elif self.mode == "三维模式": # 检查点云和实景三维 if not all([ os.path.exists(os.path.join(project_dir, 'odm_georeferencing', 'odm_georeferenced_model.laz')), os.path.exists(os.path.join(project_dir, 'odm_texturing', 'odm_textured_model_geo.obj')) ]): self.logger.error("点云或实景三维文件夹未生成") return False # TODO: 添加点云和实景三维的质量检查 elif self.mode == "重建模式": # 检查所有产品 if not all([ os.path.exists(os.path.join(project_dir, 'odm_georeferencing', 'odm_georeferenced_model.laz')), os.path.exists(os.path.join(project_dir, 'odm_texturing', 'odm_textured_model_geo.obj')) ]): self.logger.error("部分必要的文件夹未生成") return False # 检查正射影像 # if not self._check_orthophoto(project_dir): # return False # TODO: 添加点云和实景三维的质量检查 return True # TODO 正射影像怎么检查最好 def _check_orthophoto(self, project_dir: str) -> bool: """检查正射影像的质量""" ortho_path = os.path.join(project_dir, 'odm_orthophoto', 'odm_orthophoto.original.tif') if not os.path.exists(ortho_path): self.logger.error("正射影像文件未生成") return False # 检查文件大小 file_size_mb = os.path.getsize(ortho_path) / (1024 * 1024) # 转换为MB if file_size_mb < 1: self.logger.error(f"正射影像文件过小: {file_size_mb:.2f}MB") return False try: # 打开影像文件 ds = gdal.Open(ortho_path) if ds is None: self.logger.error("无法打开正射影像文件") return False # 读取第一个波段 band = ds.GetRasterBand(1) # 获取统计信息 stats = band.GetStatistics(False, True) if stats is None: self.logger.error("无法获取影像统计信息") return False min_val, max_val, mean, std = stats # 计算空值比例 no_data_value = band.GetNoDataValue() array = band.ReadAsArray() if no_data_value is not None: no_data_ratio = np.sum(array == no_data_value) / array.size else: no_data_ratio = 0 # 检查空值比例是否过高(超过50%) if no_data_ratio > 0.5: self.logger.error(f"正射影像空值比例过高: {no_data_ratio:.2%}") return False # 检查影像是否全黑或全白 if max_val - min_val < 1: self.logger.error("正射影像可能无效:像素值范围过小") return False ds = None # 关闭数据集 return True except Exception as e: self.logger.error(f"检查正射影像时发生错误: {str(e)}") return False def run_odm_with_monitor(self, grid_dir: str, grid_id: tuple, produce_dem: bool = False) -> Tuple[bool, str]: """运行ODM命令""" # if produce_dem and self.mode == "快拼模式": # self.logger.error("快拼模式下无法生成DEM,请调整生产参数") # return False, "快拼模式下无法生成DEM,请调整生产参数" self.logger.info(f"开始处理网格 ({grid_id[0]},{grid_id[1]})") success = False error_msg = "" max_retries = 3 current_try = 0 use_lowest_quality = True # 初始使用lowest quality while current_try < max_retries: current_try += 1 self.logger.info( f"第 {current_try} 次尝试处理网格 ({grid_id[0]},{grid_id[1]})") try: # 构建Docker命令 grid_dir = grid_dir[0].lower()+grid_dir[1:].replace('\\', '/') docker_command = ( f"docker run --gpus all -ti --rm " f"-v {grid_dir}:/datasets " f"opendronemap/odm:gpu " f"--project-path /datasets project " f"--max-concurrency 15 " f"--force-gps " ) # 根据是否使用lowest quality添加参数 if use_lowest_quality: docker_command += f"--feature-quality lowest " # docker_command += f"--orthophoto-resolution 8 " if produce_dem: docker_command += ( f"--dsm " f"--dtm " ) if self.mode == "快拼模式": docker_command += ( #f"--fast-orthophoto " f"--skip-3dmodel " ) elif self.mode == "三维模式": docker_command += ( f"--skip-orthophoto " ) docker_command += "--rerun-all" self.logger.info(docker_command) result = subprocess.run( docker_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = result.stdout.decode( 'utf-8'), result.stderr.decode('utf-8') stdout_lines = stdout.strip().split('\n') last_lines = '\n'.join( stdout_lines[-50:] if len(stdout_lines) > 10 else stdout_lines) self.logger.info(f"==========stdout==========: {last_lines}") if stderr: self.logger.error(f"docker run指令执行失败") self.logger.error(f"==========stderr==========: {stderr}") if "error during connect" in stderr or "The system cannot find the file specified" in stderr: error_msg = "Docker没有启动,请启动Docker" elif "user declined directory sharing" in stderr: error_msg = "Docker无法访问目录,请检查目录权限和共享设置" else: error_msg = "Docker运行失败,需要人工排查错误" break else: self.logger.info("docker run指令执行成功") if "ODM app finished" in last_lines: self.logger.info("ODM处理完成") if self._check_success(grid_dir): self.logger.info( f"网格 ({grid_id[0]},{grid_id[1]}) 处理成功") success = True error_msg = "" break else: self.logger.error( f"虽然ODM处理完成,但是生产产品质量可能不合格,需要人工检查") raise NotOverlapError # TODO 先写成这样,后面这三种情况可能处理不一样 elif "enough overlap" in last_lines: raise NotOverlapError elif "out of memory" in last_lines: raise NotOverlapError elif "strange values" in last_lines: raise NotOverlapError else: raise NotOverlapError except NotOverlapError: if use_lowest_quality: self.logger.warning( "检测到not overlap错误,移除lowest quality参数后重试") use_lowest_quality = False time.sleep(10) continue else: self.logger.error( "即使移除lowest quality参数后仍然出现错误") error_msg = "图像重叠度不足,需要人工检查数据集的采样间隔情况" break return success, error_msg def process_all_grids(self, grid_points: Dict[tuple, pd.DataFrame], produce_dem: bool) -> Dict[tuple, pd.DataFrame]: """处理所有网格 Returns: Dict[tuple, pd.DataFrame]: 成功处理的网格点数据字典 """ self.logger.info("开始执行网格处理") successful_grid_points = {} failed_grids = [] for grid_id, points in grid_points.items(): grid_dir = os.path.join( self.output_dir, f'grid_{grid_id[0]}_{grid_id[1]}' ) try: success, error_msg = self.run_odm_with_monitor( grid_dir=grid_dir, grid_id=grid_id, produce_dem=produce_dem ) if success: successful_grid_points[grid_id] = points else: self.logger.error( f"网格 ({grid_id[0]},{grid_id[1]}) 处理失败: {error_msg}") failed_grids.append((grid_id, error_msg)) except Exception as e: error_msg = str(e) self.logger.error( f"处理网格 ({grid_id[0]},{grid_id[1]}) 时发生异常: {error_msg}") failed_grids.append((grid_id, error_msg)) # 汇总处理结果 total_grids = len(grid_points) failed_count = len(failed_grids) success_count = len(successful_grid_points) self.logger.info( f"网格处理完成。总计: {total_grids}, 成功: {success_count}, 失败: {failed_count}") if failed_grids: self.logger.error("失败的网格:") for grid_id, error_msg in failed_grids: self.logger.error( f"网格 ({grid_id[0]},{grid_id[1]}): {error_msg}") if len(successful_grid_points) == 0: raise Exception("所有网格处理都失败,无法继续处理") return successful_grid_points