UAV/grid.py
2025-01-08 17:38:55 +08:00

298 lines
9.7 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import csv
import numpy as np
import matplotlib.pyplot as plt
import math
from shapely.geometry import box, MultiPoint
from shapely.ops import unary_union
from scipy.spatial import cKDTree
from utils.gps_extractor import GPSExtractor
# ---------------------- overlap 截断为不超过 10% ----------------------
def clamp_overlap(overlap):
if overlap < 0:
return 0.0
elif overlap > 0.1:
return 0.1
else:
return overlap
# ====================== 1) 生成可用矩形并记录其覆盖点集 ======================
def generate_rectangles_with_point_indices(points, w, h, overlap=0.1, min_points=800):
"""
在 bounding box 内,以 (w, h) + overlap 布置网格,生成所有矩形。
过滤:只保留"矩形内点数 >= min_points"的矩形。
返回:
rect_info_list: list of (rect_polygon, covered_indices)
- rect_polygon: Shapely Polygon
- covered_indices: 一个 set表示该矩形覆盖的所有点索引
"""
overlap = clamp_overlap(overlap)
if len(points) == 0:
return []
minx, miny = np.min(points, axis=0)
maxx, maxy = np.max(points, axis=0)
# 特殊情况:只有一个点或非常小范围 -> 很难满足 800 点
if abs(maxx - minx) < 1e-15 and abs(maxy - miny) < 1e-15:
return []
# 步长
step_x = w * (1 - overlap)
step_y = h * (1 - overlap)
x_coords = np.arange(minx, maxx + step_x, step_x)
y_coords = np.arange(miny, maxy + step_y, step_y)
# 建立 KDTree加速查找
tree = cKDTree(points)
rect_info_list = []
for x in x_coords:
for y in y_coords:
rect_poly = box(x, y, x + w, y + h)
rx_min, ry_min, rx_max, ry_max = rect_poly.bounds
cx = (rx_min + rx_max) / 2
cy = (ry_min + ry_max) / 2
r = math.sqrt((rx_max - rx_min) ** 2 + (ry_max - ry_min) ** 2) / 2
candidate_ids = tree.query_ball_point([cx, cy], r)
if not candidate_ids:
continue
covered_set = set()
for idx_pt in candidate_ids:
px, py = points[idx_pt]
if rx_min <= px <= rx_max and ry_min <= py <= ry_max:
covered_set.add(idx_pt)
# 如果覆盖的点数不足 min_points就不保留
if len(covered_set) < min_points:
continue
rect_info_list.append((rect_poly, covered_set))
return rect_info_list
# ====================== 2) 贪心算法选取子集覆盖所有点 ======================
def cover_all_points_greedy(points, rect_info_list):
"""
给定所有点 points 以及 "可用矩形+覆盖点集合" rect_info_list
要求:
- 选出若干矩形,使得所有点都被覆盖 (每个点至少属于1个选中矩形)
- 最终并集面积最小 (做近似贪心)
返回:
chosen_rects: 最终选出的矩形列表 (每个是 shapely Polygon)
"""
n = len(points)
all_indices = set(range(n)) # 所有点的索引
uncovered = set(all_indices) # 尚未被覆盖的点索引
chosen_rects = []
union_polygon = None # 当前已选矩形的并集
# 如果没有任何矩形可用,就直接失败
if not rect_info_list:
return []
# 为了在贪心过程中快速评估"新矩形带来的额外并集面积"
# 我们每次选择矩形后更新 union_polygon然后比较 union_polygon.union(new_rect).area - union_polygon.area
# 但 union_polygon 初始为 None
while uncovered:
best_gain = 0
best_new_area = float('inf')
best_rect = None
best_covered_new = set()
for rect_poly, covered_set in rect_info_list:
# 计算能覆盖多少"尚未覆盖"的点
newly_covered = uncovered.intersection(covered_set)
if not newly_covered:
continue
# 计算额外增加的并集面积
if union_polygon is None:
# 第一次选union_polygon 为空 => new_area = rect_poly.area
new_area = rect_poly.area
area_increase = new_area
else:
# 计算 union_polygon rect_poly 的面积
test_union = union_polygon.union(rect_poly)
new_area = test_union.area
area_increase = new_area - union_polygon.area
# 贪心策略:最大化 (覆盖点数量) / (面积增量)
# 或者 equivalently, (覆盖点数量) 多、(面积增量) 小 都是好
ratio = len(newly_covered) / max(area_increase, 1e-12)
# 我们要找到 ratio 最大的那个
if ratio > best_gain:
best_gain = ratio
best_new_area = area_increase
best_rect = rect_poly
best_covered_new = newly_covered
if best_rect is None:
# 没有可选的矩形能覆盖任何剩余点 => 失败 (无法覆盖所有点)
return []
# 选中 best_rect
chosen_rects.append(best_rect)
uncovered -= best_covered_new
# 更新并集
if union_polygon is None:
union_polygon = best_rect
else:
union_polygon = union_polygon.union(best_rect)
return chosen_rects
# ====================== 3) 主流程: 离散搜索 (w,h) + 贪心覆盖 ======================
def find_optimal_rectangles_cover_all_points(
points,
base_w,
base_h,
overlap=0.1,
steps=5,
min_points=800
):
"""
在 [0.5*base_w,1.5*base_w] x [0.5*base_h,1.5*base_h] 的离散区间枚举 (w,h)
- 生成可用矩形(≥800 点)的列表
- 用贪心算法选出子集来覆盖所有点
- 计算选中矩形的并集面积
选出面积最小的方案并返回
"""
overlap = clamp_overlap(overlap)
n = len(points)
if n == 0:
return [], (base_w, base_h), 0.0 # 没有点就不用覆盖了
w_candidates = np.linspace(0.3 * base_w, 2 * base_w, steps)
h_candidates = np.linspace(0.3 * base_h, 2 * base_h, steps)
best_rects = []
best_area = float('inf')
best_w, best_h = base_w, base_h
for w in w_candidates:
for h in h_candidates:
rect_info_list = generate_rectangles_with_point_indices(points, w, h, overlap, min_points)
if not rect_info_list:
# 说明没有任何矩形能达到 "≥800点"
continue
# 用贪心覆盖所有点
chosen_rects = cover_all_points_greedy(points, rect_info_list)
if not chosen_rects:
# 无法覆盖所有点
continue
# 计算并集面积
union_poly = unary_union(chosen_rects)
area_covered = union_poly.area
if area_covered < best_area:
best_area = area_covered
best_rects = chosen_rects
best_w, best_h = w, h
return best_rects, (best_w, best_h), best_area
# ====================== 4) 读取 CSV + 可视化 ======================
def plot_image_points_cover_all_min_area(
image_dir, # 新参数:图片文件夹路径
base_rect_width=0.001,
base_rect_height=0.001,
overlap=0.1,
steps=5,
min_points=800
):
"""
从图片文件夹读取GPS坐标:
1) 使用 GPSExtractor 从图片中提取GPS坐标
2) 在 [0.5*base_w,1.5*base_w] x [0.5*base_h,1.5*base_h] 离散搜索 (w,h)
3) 对每个 (w,h), 先生成所有"含≥800点"的矩形 => 再用贪心覆盖所有点 => 计算并集面积
4) 最小并集面积的方案即近似最优解
5) 最终用该方案可视化
"""
overlap = clamp_overlap(overlap)
# 使用 GPSExtractor 读取图片GPS坐标
extractor = GPSExtractor(image_dir)
gps_df = extractor.extract_all_gps()
if gps_df.empty:
print("未能从图片中提取到GPS坐标。")
return
points = np.column_stack((gps_df['lon'], gps_df['lat'])) # (N, 2), [x=lon, y=lat]
n = len(points)
if n == 0:
print("No points extracted from images.")
return
# 贪心 + 离散搜索
chosen_rects, (best_w, best_h), best_area = find_optimal_rectangles_cover_all_points(
points,
base_w=base_rect_width,
base_h=base_rect_height,
overlap=overlap,
steps=steps,
min_points=min_points
)
if not chosen_rects:
print(f"无法找到满足 '每个矩形≥{min_points}' 且覆盖所有点 的方案,试着调大尺寸/步数/overlap。")
return
# 可视化
plt.figure(figsize=(10, 8))
# 画点
plt.scatter(points[:, 0], points[:, 1], c='red', s=10, label='Points')
# 画矩形
for i, rect in enumerate(chosen_rects):
if rect.is_empty:
continue
x, y = rect.exterior.xy
plt.fill(x, y, edgecolor='green', fill=False, alpha=0.3,
label='Chosen Rectangles' if i == 0 else "")
plt.title(
f"Cover All Points, Each Rect≥{min_points} pts, Minimal Union Area\n"
f"base=({base_rect_width:.6f} x {base_rect_height:.6f}), overlap≤{overlap}, steps={steps}\n"
f"best (w,h)=({best_w:.6f},{best_h:.6f}), union area={best_area:.6f}, #rect={len(chosen_rects)}"
)
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.legend()
plt.grid(True)
plt.show()
# ------------------ 测试入口 ------------------
if __name__ == "__main__":
image_dir = r"C:\datasets\134\code\images" # 替换为你的图片文件夹路径
plot_image_points_cover_all_min_area(
image_dir,
base_rect_width=0.01,
base_rect_height=0.01,
overlap=0.05, # 会被截断到 0.1
steps=40,
min_points=100
)