UAV/utils/odm_monitor.py
2025-01-18 10:47:47 +08:00

292 lines
11 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import time
import logging
import subprocess
from typing import Dict, Tuple
import pandas as pd
import numpy as np
from osgeo import gdal
class NotOverlapError(Exception):
"""图像重叠度不足异常"""
pass
class ODMProcessMonitor:
"""ODM处理监控器"""
def __init__(self, output_dir: str, mode: str = "快拼模式"):
self.output_dir = output_dir
self.logger = logging.getLogger('UAV_Preprocess.ODMMonitor')
self.mode = mode
def _check_success(self, grid_dir: str) -> bool:
"""检查ODM是否执行成功
检查项目:
1. 必要的文件夹和文件是否存在
2. 产品文件是否有效
"""
project_dir = os.path.join(grid_dir, 'project')
# 根据不同模式检查不同的产品
if self.mode == "快拼模式":
# 只检查正射影像
# if not self._check_orthophoto(project_dir):
# return False
pass
elif self.mode == "三维模式":
# 检查点云和实景三维
if not all([
os.path.exists(os.path.join(project_dir, 'odm_georeferencing', 'odm_georeferenced_model.laz')),
os.path.exists(os.path.join(project_dir, 'odm_texturing', 'odm_textured_model_geo.obj'))
]):
self.logger.error("点云或实景三维文件夹未生成")
return False
# TODO: 添加点云和实景三维的质量检查
elif self.mode == "重建模式":
# 检查所有产品
if not all([
os.path.exists(os.path.join(project_dir, 'odm_georeferencing', 'odm_georeferenced_model.laz')),
os.path.exists(os.path.join(project_dir, 'odm_texturing', 'odm_textured_model_geo.obj'))
]):
self.logger.error("部分必要的文件夹未生成")
return False
# 检查正射影像
# if not self._check_orthophoto(project_dir):
# return False
# TODO: 添加点云和实景三维的质量检查
return True
# TODO 正射影像怎么检查最好
def _check_orthophoto(self, project_dir: str) -> bool:
"""检查正射影像的质量"""
ortho_path = os.path.join(project_dir, 'odm_orthophoto', 'odm_orthophoto.original.tif')
if not os.path.exists(ortho_path):
self.logger.error("正射影像文件未生成")
return False
# 检查文件大小
file_size_mb = os.path.getsize(ortho_path) / (1024 * 1024) # 转换为MB
if file_size_mb < 1:
self.logger.error(f"正射影像文件过小: {file_size_mb:.2f}MB")
return False
try:
# 打开影像文件
ds = gdal.Open(ortho_path)
if ds is None:
self.logger.error("无法打开正射影像文件")
return False
# 读取第一个波段
band = ds.GetRasterBand(1)
# 获取统计信息
stats = band.GetStatistics(False, True)
if stats is None:
self.logger.error("无法获取影像统计信息")
return False
min_val, max_val, mean, std = stats
# 计算空值比例
no_data_value = band.GetNoDataValue()
array = band.ReadAsArray()
if no_data_value is not None:
no_data_ratio = np.sum(array == no_data_value) / array.size
else:
no_data_ratio = 0
# 检查空值比例是否过高超过50%
if no_data_ratio > 0.5:
self.logger.error(f"正射影像空值比例过高: {no_data_ratio:.2%}")
return False
# 检查影像是否全黑或全白
if max_val - min_val < 1:
self.logger.error("正射影像可能无效:像素值范围过小")
return False
ds = None # 关闭数据集
return True
except Exception as e:
self.logger.error(f"检查正射影像时发生错误: {str(e)}")
return False
def run_odm_with_monitor(self, grid_dir: str, grid_id: tuple, produce_dem: bool = False) -> Tuple[bool, str]:
"""运行ODM命令"""
# if produce_dem and self.mode == "快拼模式":
# self.logger.error("快拼模式下无法生成DEM请调整生产参数")
# return False, "快拼模式下无法生成DEM请调整生产参数"
self.logger.info(f"开始处理网格 ({grid_id[0]},{grid_id[1]})")
success = False
error_msg = ""
max_retries = 3
current_try = 0
use_lowest_quality = True # 初始使用lowest quality
while current_try < max_retries:
current_try += 1
self.logger.info(
f"{current_try} 次尝试处理网格 ({grid_id[0]},{grid_id[1]})")
try:
# 构建Docker命令
grid_dir = grid_dir[0].lower()+grid_dir[1:].replace('\\', '/')
docker_command = (
f"docker run --gpus all -ti --rm "
f"-v {grid_dir}:/datasets "
f"opendronemap/odm:gpu "
f"--project-path /datasets project "
f"--max-concurrency 15 "
f"--force-gps "
)
# 根据是否使用lowest quality添加参数
if use_lowest_quality:
docker_command += f"--feature-quality lowest "
docker_command += f"--orthophoto-resolution 8 "
if produce_dem:
docker_command += (
f"--dsm "
f"--dtm "
)
if self.mode == "快拼模式":
docker_command += (
#f"--fast-orthophoto "
f"--skip-3dmodel "
)
elif self.mode == "三维模式":
docker_command += (
f"--skip-orthophoto "
)
docker_command += "--rerun-all"
self.logger.info(docker_command)
result = subprocess.run(
docker_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = result.stdout.decode(
'utf-8'), result.stderr.decode('utf-8')
stdout_lines = stdout.strip().split('\n')
last_lines = '\n'.join(
stdout_lines[-50:] if len(stdout_lines) > 10 else stdout_lines)
self.logger.info(f"==========stdout==========: {last_lines}")
if stderr:
self.logger.error(f"docker run指令执行失败")
self.logger.error(f"==========stderr==========: {stderr}")
if "error during connect" in stderr or "The system cannot find the file specified" in stderr:
error_msg = "Docker没有启动请启动Docker"
elif "user declined directory sharing" in stderr:
error_msg = "Docker无法访问目录请检查目录权限和共享设置"
else:
error_msg = "Docker运行失败需要人工排查错误"
break
else:
self.logger.info("docker run指令执行成功")
if "ODM app finished" in last_lines:
self.logger.info("ODM处理完成")
if self._check_success(grid_dir):
self.logger.info(
f"网格 ({grid_id[0]},{grid_id[1]}) 处理成功")
success = True
error_msg = ""
break
else:
self.logger.error(
f"虽然ODM处理完成但是生产产品质量可能不合格需要人工检查")
raise NotOverlapError
# TODO 先写成这样,后面这三种情况可能处理不一样
elif "enough overlap" in last_lines:
raise NotOverlapError
elif "out of memory" in last_lines:
raise NotOverlapError
elif "strange values" in last_lines:
raise NotOverlapError
else:
raise NotOverlapError
except NotOverlapError:
if use_lowest_quality:
self.logger.warning(
"检测到not overlap错误移除lowest quality参数后重试")
use_lowest_quality = False
time.sleep(10)
continue
else:
self.logger.error(
"即使移除lowest quality参数后仍然出现错误")
error_msg = "图像重叠度不足,需要人工检查数据集的采样间隔情况"
break
return success, error_msg
def process_all_grids(self, grid_points: Dict[tuple, pd.DataFrame], produce_dem: bool) -> Dict[tuple, pd.DataFrame]:
"""处理所有网格
Returns:
Dict[tuple, pd.DataFrame]: 成功处理的网格点数据字典
"""
self.logger.info("开始执行网格处理")
successful_grid_points = {}
failed_grids = []
for grid_id, points in grid_points.items():
grid_dir = os.path.join(
self.output_dir, f'grid_{grid_id[0]}_{grid_id[1]}'
)
try:
success, error_msg = self.run_odm_with_monitor(
grid_dir=grid_dir,
grid_id=grid_id,
produce_dem=produce_dem
)
if success:
successful_grid_points[grid_id] = points
else:
self.logger.error(
f"网格 ({grid_id[0]},{grid_id[1]}) 处理失败: {error_msg}")
failed_grids.append((grid_id, error_msg))
except Exception as e:
error_msg = str(e)
self.logger.error(
f"处理网格 ({grid_id[0]},{grid_id[1]}) 时发生异常: {error_msg}")
failed_grids.append((grid_id, error_msg))
# 汇总处理结果
total_grids = len(grid_points)
failed_count = len(failed_grids)
success_count = len(successful_grid_points)
self.logger.info(
f"网格处理完成。总计: {total_grids}, 成功: {success_count}, 失败: {failed_count}")
if failed_grids:
self.logger.error("失败的网格:")
for grid_id, error_msg in failed_grids:
self.logger.error(
f"网格 ({grid_id[0]},{grid_id[1]}): {error_msg}")
if len(successful_grid_points) == 0:
raise Exception("所有网格处理都失败,无法继续处理")
return successful_grid_points