257 lines
10 KiB
Python
257 lines
10 KiB
Python
import os
|
||
import logging
|
||
import subprocess
|
||
from typing import Dict, Tuple
|
||
import pandas as pd
|
||
import numpy as np
|
||
from osgeo import gdal
|
||
|
||
|
||
class NotOverlapError(Exception):
|
||
"""图像重叠度不足异常"""
|
||
pass
|
||
|
||
class DockerNotRunError(Exception):
|
||
"""Docker未启动异常"""
|
||
pass
|
||
|
||
class DockerShareError(Exception):
|
||
"""Docker目录共享异常"""
|
||
pass
|
||
|
||
class ODMProcessMonitor:
|
||
"""ODM处理监控器"""
|
||
|
||
def __init__(self, output_dir: str, mode: str = "快拼模式"):
|
||
self.output_dir = output_dir
|
||
self.logger = logging.getLogger('UAV_Preprocess.ODMMonitor')
|
||
self.mode = mode
|
||
|
||
def _check_success(self, grid_dir: str) -> bool:
|
||
"""检查ODM是否执行成功
|
||
|
||
检查项目:
|
||
1. 必要的文件夹是否存在
|
||
2. 正射影像是否生成且有效
|
||
3. 正射影像文件大小是否正常
|
||
"""
|
||
# 检查必要文件夹
|
||
success_markers = ['odm_orthophoto']
|
||
if self.mode != "快拼模式":
|
||
success_markers.extend(['odm_texturing', 'odm_georeferencing'])
|
||
|
||
if not all(os.path.exists(os.path.join(grid_dir, 'project', marker)) for marker in success_markers):
|
||
self.logger.error("必要的文件夹未生成")
|
||
return False
|
||
|
||
# 检查正射影像文件
|
||
ortho_path = os.path.join(grid_dir, 'project', 'odm_orthophoto', 'odm_orthophoto.original.tif')
|
||
if not os.path.exists(ortho_path):
|
||
self.logger.error("正射影像文件未生成")
|
||
return False
|
||
|
||
# 检查文件大小
|
||
file_size_mb = os.path.getsize(ortho_path) / (1024 * 1024) # 转换为MB
|
||
if file_size_mb < 1:
|
||
self.logger.error(f"正射影像文件过小: {file_size_mb:.2f}MB")
|
||
return False
|
||
|
||
try:
|
||
# 打开影像文件
|
||
ds = gdal.Open(ortho_path)
|
||
if ds is None:
|
||
self.logger.error("无法打开正射影像文件")
|
||
return False
|
||
|
||
# 读取第一个波段
|
||
band = ds.GetRasterBand(1)
|
||
|
||
# 获取统计信息
|
||
stats = band.GetStatistics(False, True)
|
||
if stats is None:
|
||
self.logger.error("无法获取影像统计信息")
|
||
return False
|
||
|
||
min_val, max_val, mean, std = stats
|
||
|
||
# 计算空值比例
|
||
no_data_value = band.GetNoDataValue()
|
||
array = band.ReadAsArray()
|
||
if no_data_value is not None:
|
||
no_data_ratio = np.sum(array == no_data_value) / array.size
|
||
else:
|
||
no_data_ratio = 0
|
||
|
||
# 检查空值比例是否过高(超过50%)
|
||
if no_data_ratio > 0.5:
|
||
self.logger.error(f"正射影像空值比例过高: {no_data_ratio:.2%}")
|
||
return False
|
||
|
||
# 检查影像是否全黑或全白
|
||
if max_val - min_val < 1:
|
||
self.logger.error("正射影像可能无效:像素值范围过小")
|
||
return False
|
||
|
||
ds = None # 关闭数据集
|
||
return True
|
||
|
||
except Exception as e:
|
||
self.logger.error(f"检查正射影像时发生错误: {str(e)}")
|
||
return False
|
||
|
||
def run_odm_with_monitor(self, grid_dir: str, grid_id: tuple, fast_mode: bool = True, produce_dem: bool = False) -> Tuple[bool, str]:
|
||
"""运行ODM命令"""
|
||
if produce_dem and fast_mode:
|
||
self.logger.error("快拼模式下无法生成DEM,请调整生产参数")
|
||
return False, "快拼模式下无法生成DEM,请调整生产参数"
|
||
|
||
self.logger.info(f"开始处理网格 ({grid_id[0]},{grid_id[1]})")
|
||
max_retries = 3
|
||
current_try = 0
|
||
use_lowest_quality = True # 初始使用lowest quality
|
||
|
||
while current_try < max_retries:
|
||
current_try += 1
|
||
self.logger.info(f"第 {current_try} 次尝试处理网格 ({grid_id[0]},{grid_id[1]})")
|
||
|
||
try:
|
||
# 构建Docker命令
|
||
grid_dir = grid_dir[0].lower()+grid_dir[1:].replace('\\', '/')
|
||
docker_command = (
|
||
f"docker run --gpus all -ti --rm "
|
||
f"-v {grid_dir}:/datasets "
|
||
f"opendronemap/odm:gpu "
|
||
f"--project-path /datasets project "
|
||
f"--max-concurrency 15 "
|
||
f"--force-gps "
|
||
)
|
||
|
||
# 根据是否使用lowest quality添加参数
|
||
if use_lowest_quality:
|
||
docker_command += f"--feature-quality lowest "
|
||
|
||
docker_command += f"--orthophoto-resolution 10 "
|
||
|
||
if produce_dem:
|
||
docker_command += (
|
||
f"--dsm "
|
||
f"--dtm "
|
||
)
|
||
|
||
if fast_mode:
|
||
docker_command += (
|
||
f"--fast-orthophoto "
|
||
f"--skip-3dmodel "
|
||
)
|
||
|
||
docker_command += "--rerun-all"
|
||
self.logger.info(docker_command)
|
||
|
||
result = subprocess.run(
|
||
docker_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||
stdout, stderr = result.stdout.decode(
|
||
'utf-8'), result.stderr.decode('utf-8')
|
||
|
||
self.logger.error(f"==========stderr==========: {stderr}")
|
||
|
||
# 检查是否有错误
|
||
stdout_lines = stdout.strip().split('\n')
|
||
last_lines = stdout_lines[-10:] if len(stdout_lines) > 10 else stdout_lines
|
||
|
||
# 检查Docker是否未运行
|
||
if any("docker not run" in line.lower() for line in last_lines) or \
|
||
any("docker daemon" in line.lower() for line in last_lines) or \
|
||
any("cannot connect to the docker daemon" in line.lower() for line in last_lines):
|
||
raise DockerNotRunError("Docker服务未启动")
|
||
|
||
# 检查目录共享问题
|
||
if any("not share" in line.lower() for line in last_lines) or \
|
||
any("permission denied" in line.lower() for line in last_lines) or \
|
||
any("access is denied" in line.lower() for line in last_lines):
|
||
raise DockerShareError("Docker无法访问目录")
|
||
|
||
# 检查是否有重叠度不足错误
|
||
if any("not overlap" in line.lower() for line in last_lines):
|
||
raise NotOverlapError("检测到图像重叠度不足错误")
|
||
|
||
# 检查执行结果
|
||
if self._check_success(grid_dir):
|
||
self.logger.info(f"网格 ({grid_id[0]},{grid_id[1]}) 处理成功")
|
||
return True, ""
|
||
|
||
if current_try < max_retries:
|
||
self.logger.warning(f"网格处理失败,准备第 {current_try + 1} 次重试")
|
||
else:
|
||
self.logger.error(f"网格 ({grid_id[0]},{grid_id[1]}) 处理失败,已达到最大重试次数")
|
||
return False, f"网格 ({grid_id[0]},{grid_id[1]}) 处理失败,已重试{max_retries}次"
|
||
|
||
except NotOverlapError:
|
||
if use_lowest_quality:
|
||
self.logger.warning("检测到'not overlap'错误,移除lowest quality参数后重试")
|
||
use_lowest_quality = False
|
||
continue
|
||
else:
|
||
self.logger.error("即使移除lowest quality参数后仍然出现'not overlap'错误")
|
||
return False, "图像重叠度不足"
|
||
|
||
except DockerNotRunError:
|
||
self.logger.error("Docker服务未启动")
|
||
return False, "Docker没有启动,请启动Docker"
|
||
|
||
except DockerShareError:
|
||
self.logger.error("Docker无法访问目录")
|
||
return False, "Docker无法访问数据目录或输出目录,请检查目录权限和共享设置"
|
||
|
||
return False, f"网格 ({grid_id[0]},{grid_id[1]}) 处理失败"
|
||
|
||
def process_all_grids(self, grid_points: Dict[tuple, pd.DataFrame], produce_dem: bool) -> Dict[tuple, pd.DataFrame]:
|
||
"""处理所有网格
|
||
|
||
Returns:
|
||
Dict[tuple, pd.DataFrame]: 成功处理的网格点数据字典
|
||
"""
|
||
self.logger.info("开始执行网格处理")
|
||
successful_grid_points = {}
|
||
failed_grids = []
|
||
|
||
for grid_id, points in grid_points.items():
|
||
grid_dir = os.path.join(
|
||
self.output_dir, f'grid_{grid_id[0]}_{grid_id[1]}'
|
||
)
|
||
|
||
try:
|
||
success, error_msg = self.run_odm_with_monitor(
|
||
grid_dir=grid_dir,
|
||
grid_id=grid_id,
|
||
fast_mode=(self.mode == "快拼模式"),
|
||
produce_dem=produce_dem
|
||
)
|
||
|
||
if success:
|
||
successful_grid_points[grid_id] = points
|
||
else:
|
||
self.logger.error(f"网格 ({grid_id[0]},{grid_id[1]}) 处理失败: {error_msg}")
|
||
failed_grids.append((grid_id, error_msg))
|
||
|
||
except Exception as e:
|
||
error_msg = str(e)
|
||
self.logger.error(f"处理网格 ({grid_id[0]},{grid_id[1]}) 时发生异常: {error_msg}")
|
||
failed_grids.append((grid_id, error_msg))
|
||
|
||
# 汇总处理结果
|
||
total_grids = len(grid_points)
|
||
failed_count = len(failed_grids)
|
||
success_count = len(successful_grid_points)
|
||
|
||
self.logger.info(f"网格处理完成。总计: {total_grids}, 成功: {success_count}, 失败: {failed_count}")
|
||
if failed_grids:
|
||
self.logger.error("失败的网格:")
|
||
for grid_id, error_msg in failed_grids:
|
||
self.logger.error(f"网格 ({grid_id[0]},{grid_id[1]}): {error_msg}")
|
||
|
||
if len(successful_grid_points) == 0:
|
||
raise Exception("所有网格处理都失败,无法继续处理")
|
||
|
||
|
||
return successful_grid_points
|