UAV/post_pro/conv_obj.py
2025-02-18 10:30:49 +08:00

214 lines
9.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import subprocess
import json
import shutil
import logging
from pyproj import Transformer
import cv2
class ConvertOBJ:
def __init__(self, output_dir: str):
self.output_dir = output_dir
# 用于存储所有grid的UTM范围
self.ref_east = float('inf')
self.ref_north = float('inf')
# 初始化UTM到WGS84的转换器
self.transformer = Transformer.from_crs(
"EPSG:32649", "EPSG:4326", always_xy=True)
self.logger = logging.getLogger('UAV_Preprocess.ConvertOBJ')
def convert_grid_obj(self, grid_points):
"""转换每个网格的OBJ文件为OSGB格式"""
os.makedirs(os.path.join(self.output_dir,
"osgb", "Data"), exist_ok=True)
# 以第一个grid的UTM坐标作为参照系
first_grid_id = list(grid_points.keys())[0]
first_grid_dir = os.path.join(
self.output_dir,
f"grid_{first_grid_id[0]}_{first_grid_id[1]}",
"project"
)
log_file = os.path.join(
first_grid_dir, "odm_orthophoto", "odm_orthophoto_log.txt")
self.ref_east, self.ref_north = self.read_utm_offset(log_file)
for grid_id in grid_points.keys():
try:
self._convert_single_grid(grid_id, grid_points)
except Exception as e:
self.logger.error(f"网格 {grid_id} 转换失败: {str(e)}")
self._create_merged_metadata()
def _convert_single_grid(self, grid_id, grid_points):
"""转换单个网格的OBJ文件"""
# 1. 构建相关路径
grid_name = f"grid_{grid_id[0]}_{grid_id[1]}"
project_dir = os.path.join(self.output_dir, grid_name, "project")
texturing_dir = os.path.join(project_dir, "odm_texturing_25d")
texturing_dst_dir = os.path.join(project_dir, "odm_texturing_dst")
opensfm_dir = os.path.join(project_dir, "opensfm")
log_file = os.path.join(
project_dir, "odm_orthophoto", "odm_orthophoto_log.txt")
os.makedirs(texturing_dst_dir, exist_ok=True)
# 2. 在新文件夹下利用UTM偏移量修改obj文件顶点坐标纹理文件下采样
utm_offset = self.read_utm_offset(log_file)
modified_obj = self.modify_obj_coordinates(
texturing_dir, texturing_dst_dir, utm_offset)
self.downsample_texture(texturing_dir, texturing_dst_dir)
# 3. 执行格式转换
self.logger.info(f"开始转换网格 {grid_id} 的OBJ文件")
output_osgb = os.path.join(texturing_dst_dir, "Tile.osgb")
cmd = (
f"osgconv {modified_obj} {output_osgb} "
f"--compressed --smooth --fix-transparency "
)
self.logger.info(f"执行osgconv命令{cmd}")
try:
subprocess.run(cmd, shell=True, check=True, cwd=texturing_dir)
except subprocess.CalledProcessError as e:
raise RuntimeError(f"OSGB转换失败: {str(e)}")
# 5. 创建OSGB目录结构复制文件
osgb_base_dir = os.path.join(self.output_dir, "osgb")
data_dir = os.path.join(osgb_base_dir, "Data")
tile_dir = os.path.join(data_dir, f"Tile_{grid_id[0]}_{grid_id[1]}")
os.makedirs(tile_dir, exist_ok=True)
target_osgb = os.path.join(
tile_dir, f"Tile_{grid_id[0]}_{grid_id[1]}.osgb")
shutil.copy2(output_osgb, target_osgb)
def _create_merged_metadata(self):
"""创建合并后的metadata.xml文件"""
# 转换为WGS84经纬度
center_lon, center_lat = self.transformer.transform(
self.ref_east, self.ref_north)
metadata_content = f"""<?xml version="1.0" encoding="utf-8"?>
<ModelMetadata version="1">
<SRS>EPSG:4326</SRS>
<SRSOrigin>{center_lon},{center_lat},0.000000</SRSOrigin>
<Texture>
<ColorSource>Visible</ColorSource>
</Texture>
</ModelMetadata>"""
metadata_file = os.path.join(self.output_dir, "osgb", "metadata.xml")
with open(metadata_file, 'w', encoding='utf-8') as f:
f.write(metadata_content)
def read_utm_offset(self, log_file: str) -> tuple:
"""读取UTM偏移量"""
try:
east_offset = None
north_offset = None
with open(log_file, 'r') as f:
lines = f.readlines()
for i, line in enumerate(lines):
if 'utm_north_offset' in line and i + 1 < len(lines):
north_offset = float(lines[i + 1].strip())
elif 'utm_east_offset' in line and i + 1 < len(lines):
east_offset = float(lines[i + 1].strip())
if east_offset is None or north_offset is None:
raise ValueError("未找到UTM偏移量")
return east_offset, north_offset
except Exception as e:
self.logger.error(f"读取UTM偏移量时发生错误: {str(e)}")
raise
def modify_obj_coordinates(self, texturing_dir: str, texturing_dst_dir: str, utm_offset: tuple) -> str:
"""修改obj文件中的顶点坐标使用相对坐标系"""
obj_file = os.path.join(texturing_dir, "odm_textured_model_geo.obj")
obj_dst_file = os.path.join(
texturing_dst_dir, "odm_textured_model_geo_utm.obj")
if not os.path.exists(obj_file):
raise FileNotFoundError(f"找不到OBJ文件: {obj_file}")
shutil.copy2(os.path.join(texturing_dir, "odm_textured_model_geo.mtl"),
os.path.join(texturing_dst_dir, "odm_textured_model_geo.mtl"))
east_offset, north_offset = utm_offset
self.logger.info(
f"UTM坐标偏移{east_offset - self.ref_east}, {north_offset - self.ref_north}")
try:
with open(obj_file, 'r') as f_in, open(obj_dst_file, 'w') as f_out:
for line in f_in:
if line.startswith('v '):
# 处理顶点坐标行
parts = line.strip().split()
# 使用相对于整体最小UTM坐标的偏移
x = float(parts[1]) + (east_offset - self.ref_east)
y = float(parts[2]) + (north_offset - self.ref_north)
z = float(parts[3])
f_out.write(f'v {x:.6f} {z:.6f} {-y:.6f}\n')
elif line.startswith('vn '): # 处理法线向量
parts = line.split()
nx = float(parts[1])
ny = float(parts[2])
nz = float(parts[3])
# 同步反转法线的 Y 轴
new_line = f"vn {nx} {nz} {-ny}\n"
f_out.write(new_line)
else:
# 其他行直接写入
f_out.write(line)
return obj_dst_file
except Exception as e:
self.logger.error(f"修改obj坐标时发生错误: {str(e)}")
raise
def downsample_texture(self, src_dir: str, dst_dir: str):
"""复制并重命名纹理文件对大于100MB的文件进行多次下采样直到文件小于100MB
Args:
src_dir: 源纹理目录
dst_dir: 目标纹理目录
"""
for file in os.listdir(src_dir):
if file.lower().endswith(('.png')):
src_path = os.path.join(src_dir, file)
dst_path = os.path.join(dst_dir, file)
# 检查文件大小(以字节为单位)
file_size = os.path.getsize(src_path)
if file_size <= 100 * 1024 * 1024: # 如果文件小于等于100MB直接复制
shutil.copy2(src_path, dst_path)
else:
# 文件大于100MB进行下采样
img = cv2.imread(src_path, cv2.IMREAD_UNCHANGED)
if_first_ds = True
while file_size > 100 * 1024 * 1024: # 大于100MB
self.logger.info(f"纹理文件 {file} 大于100MB进行下采样")
if if_first_ds:
# 计算新的尺寸长宽各变为1/4
new_size = (img.shape[1] // 4,
img.shape[0] // 4) # 逐步减小尺寸
# 使用双三次插值进行下采样
resized_img = cv2.resize(
img, new_size, interpolation=cv2.INTER_CUBIC)
if_first_ds = False
else:
# 计算新的尺寸长宽各变为1/2
new_size = (img.shape[1] // 2,
img.shape[0] // 2) # 逐步减小尺寸
# 使用双三次插值进行下采样
resized_img = cv2.resize(
img, new_size, interpolation=cv2.INTER_CUBIC)
# 更新文件路径为下采样后的路径
cv2.imwrite(dst_path, resized_img, [
cv2.IMWRITE_PNG_COMPRESSION, 9])
# 更新文件大小和图像
file_size = os.path.getsize(dst_path)
img = cv2.imread(dst_path, cv2.IMREAD_UNCHANGED)
self.logger.info(
f"下采样后文件大小: {file_size / (1024 * 1024):.2f} MB")