189 lines
7.1 KiB
Python
189 lines
7.1 KiB
Python
import os
|
||
import logging
|
||
import numpy as np
|
||
from typing import Dict
|
||
import pandas as pd
|
||
|
||
|
||
class MergeObj:
|
||
def __init__(self, output_dir: str):
|
||
self.output_dir = output_dir
|
||
self.logger = logging.getLogger('UAV_Preprocess.MergeObj')
|
||
|
||
def read_obj(self, file_path):
|
||
"""读取.obj文件,返回顶点列表和面列表"""
|
||
vertices = []
|
||
faces = []
|
||
|
||
with open(file_path, 'r') as file:
|
||
for line in file:
|
||
parts = line.split()
|
||
if len(parts) == 0:
|
||
continue
|
||
if parts[0] == 'v': # 顶点
|
||
vertices.append([float(parts[1]), float(parts[2]), float(parts[3])])
|
||
elif parts[0] == 'f': # 面
|
||
faces.append([int(parts[1].split('/')[0]), int(parts[2].split('/')[0]), int(parts[3].split('/')[0])])
|
||
|
||
return vertices, faces
|
||
|
||
def write_obj(self, file_path, vertices, faces):
|
||
"""将修改后的顶点和面列表写入到.obj文件"""
|
||
with open(file_path, 'w') as file:
|
||
for vertex in vertices:
|
||
file.write(f"v {vertex[0]} {vertex[1]} {vertex[2]}\n")
|
||
|
||
for face in faces:
|
||
file.write(f"f {face[0]} {face[1]} {face[2]}\n")
|
||
|
||
def translate_vertices(self, vertices, translation):
|
||
"""平移顶点"""
|
||
return [[v[0] + translation[0], v[1] + translation[1], v[2] + translation[2]] for v in vertices]
|
||
|
||
def merge_two_objs(self, obj1_path: str, obj2_path: str, output_path: str, translation):
|
||
"""合并两个OBJ文件"""
|
||
try:
|
||
self.logger.info(f"开始合并OBJ模型:\n输入1: {obj1_path}\n输入2: {obj2_path}")
|
||
|
||
# 检查输入文件是否存在
|
||
if not os.path.exists(obj1_path) or not os.path.exists(obj2_path):
|
||
raise FileNotFoundError("输入模型文件不存在")
|
||
|
||
# 读取两个obj文件
|
||
vertices1, faces1 = self.read_obj(obj1_path)
|
||
vertices2, faces2 = self.read_obj(obj2_path)
|
||
|
||
# 平移第二个模型的顶点
|
||
vertices2_translated = self.translate_vertices(vertices2, translation)
|
||
|
||
# 合并顶点和面
|
||
all_vertices = vertices1 + vertices2_translated
|
||
all_faces = faces1 + [[f[0] + len(vertices1), f[1] + len(vertices1), f[2] + len(vertices1)] for f in faces2]
|
||
|
||
# 写入合并后的obj文件
|
||
self.write_obj(output_path, all_vertices, all_faces)
|
||
|
||
self.logger.info(f"模型合并成功,已保存至: {output_path}")
|
||
|
||
except Exception as e:
|
||
self.logger.error(f"合并OBJ模型时发生错误: {str(e)}", exc_info=True)
|
||
raise
|
||
|
||
def calculate_translation(self, grid_idx: int, grid_points: Dict[int, pd.DataFrame], grid_size: float) -> tuple:
|
||
"""根据网格索引和大小计算平移量"""
|
||
# 从grid_points中获取网格划分器
|
||
grid_divider = grid_points.get('grid_divider', None)
|
||
if grid_divider is None:
|
||
# 如果没有grid_divider,使用默认的计算方式
|
||
row = grid_idx // 2
|
||
col = grid_idx % 2
|
||
else:
|
||
# 使用grid_divider获取正确的网格坐标
|
||
row, col = grid_divider.get_grid_coordinates(grid_idx)
|
||
|
||
# 计算平移量,考虑到重叠
|
||
overlap_factor = 0.9 # 重叠因子,与grid_divider中的overlap对应
|
||
x_translation = col * grid_size * overlap_factor
|
||
y_translation = row * grid_size * overlap_factor
|
||
|
||
self.logger.info(
|
||
f"网格 {grid_idx} 的位置: 行={row}, 列={col}"
|
||
)
|
||
|
||
return (x_translation, y_translation, 0) # z轴不需要平移
|
||
|
||
def merge_grid_obj(self, grid_points: Dict[int, pd.DataFrame], grid_size: float = 500):
|
||
"""合并所有网格的OBJ模型"""
|
||
self.logger.info("开始合并所有网格的OBJ模型")
|
||
|
||
if len(grid_points) < 2:
|
||
self.logger.info("只有一个网格,无需合并")
|
||
return
|
||
|
||
input_obj1, input_obj2 = None, None
|
||
merge_count = 0
|
||
|
||
try:
|
||
for grid_idx, points in grid_points.items():
|
||
if grid_idx == 'grid_divider': # 跳过grid_divider对象
|
||
continue
|
||
|
||
grid_obj = os.path.join(
|
||
self.output_dir,
|
||
f"grid_{grid_idx + 1}",
|
||
"project",
|
||
"odm_texturing",
|
||
"odm_textured_model_geo.obj"
|
||
)
|
||
|
||
if not os.path.exists(grid_obj):
|
||
self.logger.warning(f"网格 {grid_idx + 1} 的OBJ文件不存在: {grid_obj}")
|
||
continue
|
||
|
||
if input_obj1 is None:
|
||
input_obj1 = grid_obj
|
||
self.logger.info(f"设置第一个输入OBJ: {input_obj1}")
|
||
else:
|
||
input_obj2 = grid_obj
|
||
output_obj = os.path.join(self.output_dir, f"merged_model_{merge_count}.obj")
|
||
|
||
# 计算当前网格的平移量
|
||
translation = self.calculate_translation(grid_idx, grid_points, grid_size)
|
||
|
||
self.logger.info(
|
||
f"开始合并第 {merge_count + 1} 次:\n"
|
||
f"平移量: {translation}\n"
|
||
f"输出: {output_obj}"
|
||
)
|
||
|
||
self.merge_two_objs(input_obj1, input_obj2, output_obj, translation)
|
||
merge_count += 1
|
||
|
||
input_obj1 = output_obj
|
||
input_obj2 = None
|
||
|
||
# 最后的结果重命名为merged_model.obj
|
||
final_output = os.path.join(self.output_dir, "merged_model.obj")
|
||
if os.path.exists(input_obj1) and input_obj1 != final_output:
|
||
os.rename(input_obj1, final_output)
|
||
|
||
self.logger.info(
|
||
f"OBJ模型合并完成,共执行 {merge_count} 次合并,"
|
||
f"最终输出文件: {final_output}"
|
||
)
|
||
|
||
except Exception as e:
|
||
self.logger.error(f"OBJ模型合并过程中发生错误: {str(e)}", exc_info=True)
|
||
raise
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import sys
|
||
sys.path.append(os.path.dirname(
|
||
os.path.dirname(os.path.abspath(__file__))))
|
||
from utils.logger import setup_logger
|
||
import pandas as pd
|
||
|
||
# 设置输出目录和日志
|
||
output_dir = r"G:\ODM_output\1009"
|
||
setup_logger(output_dir)
|
||
|
||
# 构造测试用的grid_points字典
|
||
# 假设我们有两个网格,每个网格包含一些GPS点的DataFrame
|
||
grid_points = {
|
||
0: pd.DataFrame({
|
||
'latitude': [39.9, 39.91],
|
||
'longitude': [116.3, 116.31],
|
||
'altitude': [100, 101]
|
||
}),
|
||
1: pd.DataFrame({
|
||
'latitude': [39.92, 39.93],
|
||
'longitude': [116.32, 116.33],
|
||
'altitude': [102, 103]
|
||
})
|
||
}
|
||
|
||
# 创建MergeObj实例并执行合并
|
||
merge_obj = MergeObj(output_dir)
|
||
merge_obj.merge_grid_obj(grid_points)
|