317 lines
11 KiB
Python
317 lines
11 KiB
Python
import os
|
||
import shutil
|
||
from datetime import timedelta
|
||
from dataclasses import dataclass
|
||
from typing import Dict, Tuple
|
||
import psutil
|
||
|
||
import matplotlib.pyplot as plt
|
||
import pandas as pd
|
||
from tqdm import tqdm
|
||
|
||
from filter.cluster_filter import GPSCluster
|
||
from filter.time_group_overlap_filter import TimeGroupOverlapFilter
|
||
from filter.gps_filter import GPSFilter
|
||
from utils.odm_monitor import ODMProcessMonitor
|
||
from utils.gps_extractor import GPSExtractor
|
||
from utils.grid_divider import GridDivider
|
||
from utils.logger import setup_logger
|
||
from utils.visualizer import FilterVisualizer
|
||
from post_pro.merge_tif import MergeTif
|
||
from post_pro.merge_obj import MergeObj
|
||
from post_pro.merge_laz import MergePly
|
||
|
||
|
||
@dataclass
|
||
class PreprocessConfig:
|
||
"""预处理配置类"""
|
||
|
||
image_dir: str
|
||
output_dir: str
|
||
# 聚类过滤参数
|
||
cluster_eps: float = 0.01
|
||
cluster_min_samples: int = 5
|
||
# 时间组重叠过滤参数
|
||
time_group_overlap_threshold: float = 0.7
|
||
time_group_interval: timedelta = timedelta(minutes=5)
|
||
# 孤立点过滤参数
|
||
filter_distance_threshold: float = 0.001 # 经纬度距离
|
||
filter_min_neighbors: int = 6
|
||
# 密集点过滤参数
|
||
filter_grid_size: float = 0.001
|
||
filter_dense_distance_threshold: float = 10 # 普通距离,单位:米
|
||
filter_time_threshold: timedelta = timedelta(minutes=5)
|
||
# 网格划分参数
|
||
grid_overlap: float = 0.05
|
||
grid_size: float = 500
|
||
# 几个pipline过程是否开启
|
||
mode: str = "快拼模式"
|
||
produce_dem: bool = False
|
||
|
||
|
||
class ImagePreprocessor:
|
||
def __init__(self, config: PreprocessConfig):
|
||
self.config = config
|
||
|
||
# 检查磁盘空间
|
||
self._check_disk_space()
|
||
|
||
# 清理并重建输出目录
|
||
if os.path.exists(config.output_dir):
|
||
self._clean_output_dir()
|
||
self._setup_output_dirs()
|
||
|
||
# 初始化其他组件
|
||
self.logger = setup_logger(config.output_dir)
|
||
self.gps_points = None
|
||
self.odm_monitor = ODMProcessMonitor(
|
||
config.output_dir, mode=config.mode)
|
||
self.visualizer = FilterVisualizer(config.output_dir)
|
||
|
||
# TODO 给出警告!
|
||
def _clean_output_dir(self):
|
||
"""清理输出目录"""
|
||
try:
|
||
shutil.rmtree(self.config.output_dir)
|
||
print(f"已清理输出目录: {self.config.output_dir}")
|
||
except Exception as e:
|
||
print(f"清理输出目录时发生错误: {str(e)}")
|
||
raise
|
||
|
||
def _setup_output_dirs(self):
|
||
"""创建必要的输出目录结构"""
|
||
try:
|
||
# 创建主输出目录
|
||
os.makedirs(self.config.output_dir)
|
||
|
||
# 创建过滤图像保存目录
|
||
os.makedirs(os.path.join(self.config.output_dir, 'filter_imgs'))
|
||
|
||
# 创建日志目录
|
||
os.makedirs(os.path.join(self.config.output_dir, 'logs'))
|
||
|
||
print(f"已创建输出目录结构: {self.config.output_dir}")
|
||
except Exception as e:
|
||
print(f"创建输出目录时发生错误: {str(e)}")
|
||
raise
|
||
|
||
def _get_directory_size(self, path):
|
||
"""获取目录的总大小(字节)"""
|
||
total_size = 0
|
||
for dirpath, dirnames, filenames in os.walk(path):
|
||
for filename in filenames:
|
||
file_path = os.path.join(dirpath, filename)
|
||
try:
|
||
total_size += os.path.getsize(file_path)
|
||
except (OSError, FileNotFoundError):
|
||
continue
|
||
return total_size
|
||
|
||
def _check_disk_space(self):
|
||
"""检查磁盘空间是否足够"""
|
||
# 获取输入目录大小
|
||
input_size = self._get_directory_size(self.config.image_dir)
|
||
|
||
# 获取输出目录所在磁盘的剩余空间
|
||
output_drive = os.path.splitdrive(
|
||
os.path.abspath(self.config.output_dir))[0]
|
||
if not output_drive: # 处理Linux/Unix路径
|
||
output_drive = '/'
|
||
|
||
disk_usage = psutil.disk_usage(output_drive)
|
||
free_space = disk_usage.free
|
||
|
||
# 计算所需空间(输入大小的1.5倍)
|
||
required_space = input_size * 12
|
||
|
||
if free_space < required_space:
|
||
error_msg = (
|
||
f"磁盘空间不足!\n"
|
||
f"输入目录大小: {input_size / (1024**3):.2f} GB\n"
|
||
f"所需空间: {required_space / (1024**3):.2f} GB\n"
|
||
f"可用空间: {free_space / (1024**3):.2f} GB\n"
|
||
f"在驱动器 {output_drive}"
|
||
)
|
||
raise RuntimeError(error_msg)
|
||
|
||
def extract_gps(self) -> pd.DataFrame:
|
||
"""提取GPS数据"""
|
||
self.logger.info("开始提取GPS数据")
|
||
extractor = GPSExtractor(self.config.image_dir)
|
||
self.gps_points = extractor.extract_all_gps()
|
||
self.logger.info(f"成功提取 {len(self.gps_points)} 个GPS点")
|
||
|
||
def cluster(self):
|
||
"""使用DBSCAN对GPS点进行聚类,只保留最大的类"""
|
||
previous_points = self.gps_points.copy()
|
||
clusterer = GPSCluster(
|
||
self.gps_points,
|
||
eps=self.config.cluster_eps,
|
||
min_samples=self.config.cluster_min_samples
|
||
)
|
||
|
||
self.clustered_points = clusterer.fit()
|
||
self.gps_points = clusterer.get_cluster_stats(self.clustered_points)
|
||
|
||
self.visualizer.visualize_filter_step(
|
||
self.gps_points, previous_points, "1-Clustering")
|
||
|
||
def filter_isolated_points(self):
|
||
"""过滤孤立点"""
|
||
filter = GPSFilter(self.config.output_dir)
|
||
previous_points = self.gps_points.copy()
|
||
|
||
self.gps_points = filter.filter_isolated_points(
|
||
self.gps_points,
|
||
self.config.filter_distance_threshold,
|
||
self.config.filter_min_neighbors,
|
||
)
|
||
|
||
self.visualizer.visualize_filter_step(
|
||
self.gps_points, previous_points, "2-Isolated Points")
|
||
|
||
def filter_time_group_overlap(self):
|
||
"""过滤重叠的时间组"""
|
||
previous_points = self.gps_points.copy()
|
||
|
||
filter = TimeGroupOverlapFilter(
|
||
self.config.image_dir,
|
||
self.config.output_dir,
|
||
overlap_threshold=self.config.time_group_overlap_threshold
|
||
)
|
||
|
||
self.gps_points = filter.filter_overlapping_groups(
|
||
self.gps_points,
|
||
time_threshold=self.config.time_group_interval
|
||
)
|
||
|
||
self.visualizer.visualize_filter_step(
|
||
self.gps_points, previous_points, "3-Time Group Overlap")
|
||
|
||
def divide_grids(self) -> Tuple[Dict[tuple, pd.DataFrame], Dict[tuple, tuple]]:
|
||
"""划分网格
|
||
Returns:
|
||
tuple: (grid_points, translations)
|
||
- grid_points: 网格点数据字典
|
||
- translations: 网格平移量字典
|
||
"""
|
||
grid_divider = GridDivider(
|
||
overlap=self.config.grid_overlap,
|
||
grid_size=self.config.grid_size,
|
||
output_dir=self.config.output_dir
|
||
)
|
||
grids, translations, grid_points = grid_divider.adjust_grid_size_and_overlap(
|
||
self.gps_points
|
||
)
|
||
grid_divider.visualize_grids(self.gps_points, grids)
|
||
|
||
return grid_points, translations
|
||
|
||
def copy_images(self, grid_points: Dict[tuple, pd.DataFrame]):
|
||
"""复制图像到目标文件夹"""
|
||
self.logger.info("开始复制图像文件")
|
||
|
||
for grid_id, points in grid_points.items():
|
||
output_dir = os.path.join(
|
||
self.config.output_dir,
|
||
f"grid_{grid_id[0]}_{grid_id[1]}",
|
||
"project",
|
||
"images"
|
||
)
|
||
|
||
os.makedirs(output_dir, exist_ok=True)
|
||
|
||
for point in tqdm(points, desc=f"复制网格 ({grid_id[0]},{grid_id[1]}) 的图像"):
|
||
src = os.path.join(self.config.image_dir, point["file"])
|
||
dst = os.path.join(output_dir, point["file"])
|
||
shutil.copy(src, dst)
|
||
self.logger.info(
|
||
f"网格 ({grid_id[0]},{grid_id[1]}) 包含 {len(points)} 张图像")
|
||
|
||
def merge_tif(self, grid_points: Dict[tuple, pd.DataFrame], produce_dem: bool):
|
||
"""合并所有网格的影像产品"""
|
||
self.logger.info("开始合并所有影像产品")
|
||
merger = MergeTif(self.config.output_dir)
|
||
merger.merge_all_tifs(grid_points, produce_dem)
|
||
|
||
def merge_ply(self, grid_points: Dict[tuple, pd.DataFrame]):
|
||
"""合并所有网格的PLY点云"""
|
||
self.logger.info("开始合并PLY点云")
|
||
merger = MergePly(self.config.output_dir)
|
||
merger.merge_grid_laz(grid_points)
|
||
|
||
def merge_obj(self, grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple]):
|
||
"""合并所有网格的OBJ模型"""
|
||
self.logger.info("开始合并OBJ模型")
|
||
merger = MergeObj(self.config.output_dir)
|
||
merger.merge_grid_obj(grid_points, translations)
|
||
|
||
def post_process(self, successful_grid_points: Dict[tuple, pd.DataFrame], grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple]):
|
||
if len(successful_grid_points) == 1:
|
||
self.logger.info(f"只有一个网格{successful_grid_points.keys()},无需合并")
|
||
self.logger.info(f"生产结果请在{successful_grid_points.keys()[0]}目录下查看")
|
||
return
|
||
elif len(successful_grid_points) < len(grid_points):
|
||
self.logger.warning(
|
||
f"有 {len(grid_points) - len(successful_grid_points)} 个网格处理失败,"
|
||
f"将只合并成功处理的 {len(successful_grid_points)} 个网格"
|
||
)
|
||
self.merge_tif(successful_grid_points, self.config.produce_dem)
|
||
if self.config.mode != "快拼模式":
|
||
self.merge_ply(successful_grid_points)
|
||
self.merge_obj(successful_grid_points, translations)
|
||
|
||
def process(self):
|
||
"""执行完整的预处理流程"""
|
||
try:
|
||
self.extract_gps()
|
||
self.cluster()
|
||
self.filter_isolated_points()
|
||
self.filter_time_group_overlap()
|
||
grid_points, translations = self.divide_grids()
|
||
self.copy_images(grid_points)
|
||
self.logger.info("预处理任务完成")
|
||
|
||
successful_grid_points = self.odm_monitor.process_all_grids(
|
||
grid_points, self.config.produce_dem)
|
||
|
||
self.post_process(successful_grid_points,
|
||
grid_points, translations)
|
||
|
||
except Exception as e:
|
||
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
|
||
raise
|
||
|
||
|
||
if __name__ == "__main__":
|
||
# 创建配置
|
||
config = PreprocessConfig(
|
||
image_dir=r"E:\datasets\UAV\1619\project\images",
|
||
output_dir=r"G:\ODM_output\1619",
|
||
|
||
cluster_eps=0.01,
|
||
cluster_min_samples=5,
|
||
|
||
# 添加时间组重叠过滤参数
|
||
time_group_overlap_threshold=0.7,
|
||
time_group_interval=timedelta(minutes=5),
|
||
|
||
filter_distance_threshold=0.001,
|
||
filter_min_neighbors=6,
|
||
|
||
filter_grid_size=0.001,
|
||
filter_dense_distance_threshold=10,
|
||
filter_time_threshold=timedelta(minutes=5),
|
||
|
||
grid_size=800,
|
||
grid_overlap=0.05,
|
||
|
||
|
||
mode="重建模式",
|
||
produce_dem=False,
|
||
)
|
||
|
||
# 创建处理器并执行
|
||
processor = ImagePreprocessor(config)
|
||
processor.process()
|