280 lines
10 KiB
Python
280 lines
10 KiB
Python
from osgeo import gdal
|
||
import logging
|
||
import os
|
||
from typing import Dict
|
||
import pandas as pd
|
||
import time
|
||
import shutil
|
||
|
||
|
||
class MergeTif:
|
||
def __init__(self, output_dir: str):
|
||
self.output_dir = output_dir
|
||
self.logger = logging.getLogger('UAV_Preprocess.MergeTif')
|
||
|
||
def merge_two_tifs(self, input_tif1: str, input_tif2: str, output_tif: str):
|
||
"""合并两张TIF影像"""
|
||
try:
|
||
self.logger.info("开始合并TIF影像")
|
||
self.logger.info(f"输入影像1: {input_tif1}")
|
||
self.logger.info(f"输入影像2: {input_tif2}")
|
||
self.logger.info(f"输出影像: {output_tif}")
|
||
|
||
# 检查输入文件是否存在
|
||
if not os.path.exists(input_tif1) or not os.path.exists(input_tif2):
|
||
error_msg = "输入影像文件不存在"
|
||
self.logger.error(error_msg)
|
||
raise FileNotFoundError(error_msg)
|
||
|
||
# 打开影像,检查投影是否一致
|
||
datasets = []
|
||
try:
|
||
for tif in [input_tif1, input_tif2]:
|
||
ds = gdal.Open(tif)
|
||
if ds is None:
|
||
error_msg = f"无法打开影像文件: {tif}"
|
||
self.logger.error(error_msg)
|
||
raise ValueError(error_msg)
|
||
datasets.append(ds)
|
||
|
||
projections = [ds.GetProjection() for ds in datasets]
|
||
self.logger.debug(f"影像1投影: {projections[0]}")
|
||
self.logger.debug(f"影像2投影: {projections[1]}")
|
||
|
||
# 检查投影是否一致
|
||
if len(set(projections)) != 1:
|
||
error_msg = "影像的投影不一致,请先进行重投影!"
|
||
self.logger.error(error_msg)
|
||
raise ValueError(error_msg)
|
||
|
||
# 如果输出文件已存在,先删除
|
||
if os.path.exists(output_tif):
|
||
try:
|
||
os.remove(output_tif)
|
||
except Exception as e:
|
||
self.logger.warning(f"删除已存在的输出文件失败: {str(e)}")
|
||
# 生成一个新的输出文件名
|
||
base, ext = os.path.splitext(output_tif)
|
||
output_tif = f"{base}_{int(time.time())}{ext}"
|
||
self.logger.info(f"使用新的输出文件名: {output_tif}")
|
||
|
||
# 创建 GDAL Warp 选项
|
||
warp_options = gdal.WarpOptions(
|
||
format="GTiff",
|
||
resampleAlg="average",
|
||
srcNodata=0,
|
||
dstNodata=0,
|
||
multithread=True
|
||
)
|
||
|
||
self.logger.info("开始执行影像拼接...")
|
||
result = gdal.Warp(output_tif, datasets, options=warp_options)
|
||
|
||
if result is None:
|
||
error_msg = "影像拼接失败"
|
||
self.logger.error(error_msg)
|
||
raise RuntimeError(error_msg)
|
||
|
||
# 获取输出影像的基本信息
|
||
output_dataset = gdal.Open(output_tif)
|
||
if output_dataset:
|
||
width = output_dataset.RasterXSize
|
||
height = output_dataset.RasterYSize
|
||
bands = output_dataset.RasterCount
|
||
self.logger.info(
|
||
f"拼接完成,输出影像大小: {width}x{height},波段数: {bands}")
|
||
output_dataset = None # 显式关闭数据集
|
||
|
||
self.logger.info(f"影像拼接成功,输出文件保存至: {output_tif}")
|
||
|
||
finally:
|
||
# 确保所有数据集都被正确关闭
|
||
for ds in datasets:
|
||
if ds:
|
||
ds = None
|
||
result = None
|
||
|
||
except Exception as e:
|
||
self.logger.error(f"影像拼接过程中发生错误: {str(e)}", exc_info=True)
|
||
raise
|
||
|
||
def merge_grid_tif(self, grid_points: Dict[tuple, pd.DataFrame], product_info: dict):
|
||
"""合并指定产品的所有网格"""
|
||
product_name = product_info['name']
|
||
product_path = product_info['path']
|
||
filename = product_info['filename']
|
||
|
||
self.logger.info(f"开始合并{product_name}")
|
||
|
||
if len(grid_points) < 2:
|
||
grid_id = list(grid_points.keys())[0]
|
||
shutil.copy2(os.path.join(self.output_dir,
|
||
f"grid_{grid_id[0]}_{grid_id[1]}",
|
||
"project",
|
||
product_path,
|
||
filename),
|
||
os.path.join(self.output_dir,
|
||
product_info['output'])
|
||
)
|
||
|
||
input_tif1, input_tif2 = None, None
|
||
merge_count = 0
|
||
|
||
try:
|
||
for grid_id, points in grid_points.items():
|
||
grid_tif = os.path.join(
|
||
self.output_dir,
|
||
f"grid_{grid_id[0]}_{grid_id[1]}",
|
||
"project",
|
||
product_path,
|
||
filename
|
||
)
|
||
|
||
if not os.path.exists(grid_tif):
|
||
self.logger.warning(
|
||
f"网格 ({grid_id[0]},{grid_id[1]}) 的{product_name}不存在: {grid_tif}")
|
||
continue
|
||
|
||
# 如果文件大于600MB,则不使用original文件
|
||
file_size_mb = os.path.getsize(
|
||
grid_tif) / (1024 * 1024) # 转换为MB
|
||
if file_size_mb > 600:
|
||
grid_tif = os.path.join(
|
||
self.output_dir,
|
||
f"grid_{grid_id[0]}_{grid_id[1]}",
|
||
"project",
|
||
product_path,
|
||
"odm_orthophoto.tif"
|
||
)
|
||
|
||
if input_tif1 is None:
|
||
input_tif1 = grid_tif
|
||
self.logger.info(f"设置第一个输入{product_name}: {input_tif1}")
|
||
else:
|
||
input_tif2 = grid_tif
|
||
# 生成带时间戳的临时输出文件名
|
||
temp_output = os.path.join(
|
||
self.output_dir,
|
||
f"temp_merged_{int(time.time())}_{product_info['output']}"
|
||
)
|
||
|
||
self.logger.info(
|
||
f"开始合并{product_name}第 {merge_count + 1} 次:\n"
|
||
f"输入1: {input_tif1}\n"
|
||
f"输入2: {input_tif2}\n"
|
||
f"输出: {temp_output}"
|
||
)
|
||
|
||
self.merge_two_tifs(input_tif1, input_tif2, temp_output)
|
||
merge_count += 1
|
||
|
||
# 如果之前的输入文件是临时文件,则删除它
|
||
if 'temp_merged_' in input_tif1:
|
||
try:
|
||
os.remove(input_tif1)
|
||
except Exception as e:
|
||
self.logger.warning(f"删除临时文件失败: {str(e)}")
|
||
|
||
input_tif1 = temp_output
|
||
input_tif2 = None
|
||
|
||
# 重命名最终的临时文件为目标文件名
|
||
final_output = os.path.join(
|
||
self.output_dir, product_info['output'])
|
||
if os.path.exists(final_output):
|
||
try:
|
||
os.remove(final_output)
|
||
except Exception as e:
|
||
self.logger.warning(f"删除已存在的最终输出文件失败: {str(e)}")
|
||
final_output = os.path.join(
|
||
self.output_dir,
|
||
f"merged_{int(time.time())}_{product_info['output']}"
|
||
)
|
||
|
||
try:
|
||
os.rename(input_tif1, final_output)
|
||
except Exception as e:
|
||
self.logger.warning(f"重命名最终文件失败: {str(e)}")
|
||
shutil.copy2(input_tif1, final_output)
|
||
try:
|
||
os.remove(input_tif1)
|
||
except:
|
||
pass
|
||
|
||
self.logger.info(
|
||
f"{product_name}合并完成,共执行 {merge_count} 次合并,"
|
||
f"最终输出文件: {final_output}"
|
||
)
|
||
|
||
except Exception as e:
|
||
self.logger.error(
|
||
f"{product_name}合并过程中发生错误: {str(e)}", exc_info=True)
|
||
raise
|
||
|
||
def merge_all_tifs(self, grid_points: Dict[tuple, pd.DataFrame], produce_dem: bool):
|
||
"""合并所有产品(正射影像、DSM和DTM)"""
|
||
try:
|
||
products = [
|
||
{
|
||
'name': '正射影像',
|
||
'path': 'odm_orthophoto',
|
||
'filename': 'odm_orthophoto.original.tif',
|
||
'output': 'orthophoto.tif'
|
||
},
|
||
|
||
]
|
||
if produce_dem:
|
||
products.append(
|
||
{
|
||
'name': 'DSM',
|
||
'path': 'odm_dem',
|
||
'filename': 'dsm.original.tif',
|
||
'output': 'dsm.tif'
|
||
},
|
||
{
|
||
'name': 'DTM',
|
||
'path': 'odm_dem',
|
||
'filename': 'dtm.original.tif',
|
||
'output': 'dtm.tif'
|
||
}
|
||
)
|
||
|
||
for product in products:
|
||
self.merge_grid_tif(grid_points, product)
|
||
|
||
self.logger.info("所有产品合并完成")
|
||
except Exception as e:
|
||
self.logger.error(f"产品合并过程中发生错误: {str(e)}", exc_info=True)
|
||
raise
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import sys
|
||
sys.path.append(os.path.dirname(
|
||
os.path.dirname(os.path.abspath(__file__))))
|
||
from utils.logger import setup_logger
|
||
import pandas as pd
|
||
|
||
# 设置输出目录和日志
|
||
output_dir = r"G:\ODM_output\1009"
|
||
setup_logger(output_dir)
|
||
|
||
# 构造测试用的grid_points字典
|
||
# 假设我们有两个网格,每个网格包含一些GPS点的DataFrame
|
||
grid_points = {
|
||
(0, 0): pd.DataFrame({
|
||
'latitude': [39.9, 39.91],
|
||
'longitude': [116.3, 116.31],
|
||
'altitude': [100, 101]
|
||
}),
|
||
(0, 1): pd.DataFrame({
|
||
'latitude': [39.92, 39.93],
|
||
'longitude': [116.32, 116.33],
|
||
'altitude': [102, 103]
|
||
})
|
||
}
|
||
|
||
# 创建MergeTif实例并执行合并
|
||
merge_tif = MergeTif(output_dir)
|
||
merge_tif.merge_all_tifs(grid_points)
|