UAV/odm_preprocess.py
2025-01-13 11:07:14 +08:00

375 lines
14 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import shutil
from datetime import timedelta
from dataclasses import dataclass
from typing import Dict, Tuple
import psutil
import matplotlib.pyplot as plt
import pandas as pd
from tqdm import tqdm
from filter.cluster_filter import GPSCluster
from filter.time_group_overlap_filter import TimeGroupOverlapFilter
from filter.gps_filter import GPSFilter
from utils.odm_monitor import ODMProcessMonitor
from utils.gps_extractor import GPSExtractor
from utils.grid_divider import GridDivider
from utils.logger import setup_logger
from utils.visualizer import FilterVisualizer
from post_pro.merge_tif import MergeTif
from post_pro.merge_obj import MergeObj
from post_pro.merge_laz import MergePly
@dataclass
class PreprocessConfig:
"""预处理配置类"""
image_dir: str
output_dir: str
# 聚类过滤参数
cluster_eps: float = 0.01
cluster_min_samples: int = 5
# 时间组重叠过滤参数
time_group_overlap_threshold: float = 0.7
time_group_interval: timedelta = timedelta(minutes=5)
# 孤立点过滤参数
filter_distance_threshold: float = 0.001 # 经纬度距离
filter_min_neighbors: int = 6
# 密集点过滤参数
filter_grid_size: float = 0.001
filter_dense_distance_threshold: float = 10 # 普通距离,单位:米
filter_time_threshold: timedelta = timedelta(minutes=5)
# 网格划分参数
grid_overlap: float = 0.05
grid_size: float = 500
# 几个pipline过程是否开启
mode: str = "快拼模式"
produce_dem: bool = False
class ImagePreprocessor:
def __init__(self, config: PreprocessConfig):
self.config = config
# 检查磁盘空间
self._check_disk_space()
# 清理并重建输出目录
if os.path.exists(config.output_dir):
self._clean_output_dir()
self._setup_output_dirs()
# 初始化其他组件
self.logger = setup_logger(config.output_dir)
self.gps_points = None
self.odm_monitor = ODMProcessMonitor(
config.output_dir, mode=config.mode)
self.visualizer = FilterVisualizer(config.output_dir)
def _clean_output_dir(self):
"""清理输出目录"""
try:
shutil.rmtree(self.config.output_dir)
print(f"已清理输出目录: {self.config.output_dir}")
except Exception as e:
print(f"清理输出目录时发生错误: {str(e)}")
raise
def _setup_output_dirs(self):
"""创建必要的输出目录结构"""
try:
# 创建主输出目录
os.makedirs(self.config.output_dir)
# 创建过滤图像保存目录
os.makedirs(os.path.join(self.config.output_dir, 'filter_imgs'))
# 创建日志目录
os.makedirs(os.path.join(self.config.output_dir, 'logs'))
print(f"已创建输出目录结构: {self.config.output_dir}")
except Exception as e:
print(f"创建输出目录时发生错误: {str(e)}")
raise
def _get_directory_size(self, path):
"""获取目录的总大小(字节)"""
total_size = 0
for dirpath, dirnames, filenames in os.walk(path):
for filename in filenames:
file_path = os.path.join(dirpath, filename)
try:
total_size += os.path.getsize(file_path)
except (OSError, FileNotFoundError):
continue
return total_size
def _check_disk_space(self):
"""检查磁盘空间是否足够"""
# 获取输入目录大小
input_size = self._get_directory_size(self.config.image_dir)
# 获取输出目录所在磁盘的剩余空间
output_drive = os.path.splitdrive(
os.path.abspath(self.config.output_dir))[0]
if not output_drive: # 处理Linux/Unix路径
output_drive = '/home'
disk_usage = psutil.disk_usage(output_drive)
free_space = disk_usage.free
# 计算所需空间输入大小的1.5倍)
required_space = input_size * 12
if free_space < required_space:
error_msg = (
f"磁盘空间不足!\n"
f"输入目录大小: {input_size / (1024**3):.2f} GB\n"
f"所需空间: {required_space / (1024**3):.2f} GB\n"
f"可用空间: {free_space / (1024**3):.2f} GB\n"
f"在驱动器 {output_drive}"
)
raise RuntimeError(error_msg)
def extract_gps(self) -> pd.DataFrame:
"""提取GPS数据"""
self.logger.info("开始提取GPS数据")
extractor = GPSExtractor(self.config.image_dir)
self.gps_points = extractor.extract_all_gps()
self.logger.info(f"成功提取 {len(self.gps_points)} 个GPS点")
def cluster(self):
"""使用DBSCAN对GPS点进行聚类只保留最大的类"""
previous_points = self.gps_points.copy()
clusterer = GPSCluster(
self.gps_points,
eps=self.config.cluster_eps,
min_samples=self.config.cluster_min_samples
)
self.clustered_points = clusterer.fit()
self.gps_points = clusterer.get_cluster_stats(self.clustered_points)
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "1-Clustering")
def filter_isolated_points(self):
"""过滤孤立点"""
filter = GPSFilter(self.config.output_dir)
previous_points = self.gps_points.copy()
self.gps_points = filter.filter_isolated_points(
self.gps_points,
self.config.filter_distance_threshold,
self.config.filter_min_neighbors,
)
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "2-Isolated Points")
def filter_time_group_overlap(self):
"""过滤重叠的时间组"""
previous_points = self.gps_points.copy()
filter = TimeGroupOverlapFilter(
self.config.image_dir,
self.config.output_dir,
overlap_threshold=self.config.time_group_overlap_threshold
)
self.gps_points = filter.filter_overlapping_groups(
self.gps_points,
time_threshold=self.config.time_group_interval
)
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "3-Time Group Overlap")
def divide_grids(self) -> Tuple[Dict[tuple, pd.DataFrame], Dict[tuple, tuple]]:
"""划分网格
Returns:
tuple: (grid_points, translations)
- grid_points: 网格点数据字典
- translations: 网格平移量字典
"""
grid_divider = GridDivider(
overlap=self.config.grid_overlap,
grid_size=self.config.grid_size,
output_dir=self.config.output_dir
)
grids, translations, grid_points = grid_divider.adjust_grid_size_and_overlap(
self.gps_points
)
grid_divider.visualize_grids(self.gps_points, grids)
return grid_points, translations
def copy_images(self, grid_points: Dict[tuple, pd.DataFrame]):
"""复制图像到目标文件夹"""
self.logger.info("开始复制图像文件")
for grid_id, points in grid_points.items():
output_dir = os.path.join(
self.config.output_dir,
f"grid_{grid_id[0]}_{grid_id[1]}",
"project",
"images"
)
os.makedirs(output_dir, exist_ok=True)
for point in tqdm(points, desc=f"复制网格 ({grid_id[0]},{grid_id[1]}) 的图像"):
src = os.path.join(self.config.image_dir, point["file"])
dst = os.path.join(output_dir, point["file"])
shutil.copy(src, dst)
self.logger.info(
f"网格 ({grid_id[0]},{grid_id[1]}) 包含 {len(points)} 张图像")
def merge_tif(self, grid_points: Dict[tuple, pd.DataFrame], produce_dem: bool):
"""合并所有网格的影像产品"""
self.logger.info("开始合并所有影像产品")
merger = MergeTif(self.config.output_dir)
merger.merge_all_tifs(grid_points, produce_dem)
def merge_ply(self, grid_points: Dict[tuple, pd.DataFrame]):
"""合并所有网格的PLY点云"""
self.logger.info("开始合并PLY点云")
merger = MergePly(self.config.output_dir)
merger.merge_grid_laz(grid_points)
def merge_obj(self, grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple]):
"""合并所有网格的OBJ模型"""
self.logger.info("开始合并OBJ模型")
merger = MergeObj(self.config.output_dir)
merger.merge_grid_obj(grid_points, translations)
def post_process(self, successful_grid_points: Dict[tuple, pd.DataFrame], grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple]):
"""后处理:合并或复制处理结果"""
if len(successful_grid_points) == 1:
# 获取唯一成功的网格ID
grid_id = list(successful_grid_points.keys())[0]
self.logger.info(f"只有一个网格 {grid_id} 成功处理,直接复制结果")
# 构建源目录路径(成功网格的输出目录)
src_dir = os.path.join(
self.config.output_dir, f"grid_{grid_id[0]}_{grid_id[1]}", "project")
# 复制正射影像
if self.config.mode == "快拼模式":
shutil.copy2(os.path.join(src_dir, "odm_orthophoto", "odm_orthophoto.original.tif"),
os.path.join(self.config.output_dir,
"orthophoto.tif")
)
elif self.config.mode == "三维模式":
shutil.copy2(os.path.join(src_dir, "odm_georeferencing", "odm_georeferenced_model.laz"),
os.path.join(self.config.output_dir,
"pointcloud.laz")
)
shutil.copytree(os.path.join(src_dir, "odm_texturing"),
os.path.join(self.config.output_dir, "texturing"))
os.rename(os.path.join(self.config.output_dir, "texturing", "odm_textured_model_geo.obj"),
os.path.join(self.config.output_dir, "texturing", "textured_model.obj"))
os.rename(os.path.join(self.config.output_dir, "texturing", "odm_textured_model_geo.mtl"),
os.path.join(self.config.output_dir, "texturing", "textured_model.mtl"))
elif self.config.mode == "重建模式":
shutil.copy2(os.path.join(src_dir, "odm_orthophoto", "odm_orthophoto.tif"),
os.path.join(self.config.output_dir,
"orthophoto.tif")
)
shutil.copy2(os.path.join(src_dir, "odm_georeferencing", "odm_georeferenced_model.laz"),
os.path.join(self.config.output_dir,
"pointcloud.laz")
)
shutil.copytree(os.path.join(src_dir, "odm_texturing"),
os.path.join(self.config.output_dir, "texturing"))
os.rename(os.path.join(self.config.output_dir, "texturing", "odm_textured_model_geo.obj"),
os.path.join(self.config.output_dir, "texturing", "textured_model.obj"))
os.rename(os.path.join(self.config.output_dir, "texturing", "odm_textured_model_geo.mtl"),
os.path.join(self.config.output_dir, "texturing", "textured_model.mtl"))
if self.config.produce_dem:
shutil.copy2(
os.path.join(src_dir, "odm_dem", "dsm.tif"),
os.path.join(self.config.output_dir, "dsm.tif")
)
shutil.copy2(
os.path.join(src_dir, "odm_dem", "dtm.tif"),
os.path.join(self.config.output_dir, "dtm.tif")
)
self.logger.info("单网格结果复制完成")
return
# 如果有多个网格,执行合并操作
elif len(successful_grid_points) < len(grid_points):
self.logger.warning(
f"{len(grid_points) - len(successful_grid_points)} 个网格处理失败,"
f"将只合并成功处理的 {len(successful_grid_points)} 个网格"
)
if self.config.mode == "快拼模式":
self.merge_tif(successful_grid_points, self.config.produce_dem)
elif self.config.mode == "三维模式":
self.merge_ply(successful_grid_points)
self.merge_obj(successful_grid_points, translations)
else:
self.merge_tif(successful_grid_points, self.config.produce_dem)
self.merge_ply(successful_grid_points)
self.merge_obj(successful_grid_points, translations)
def process(self):
"""执行完整的预处理流程"""
try:
self.extract_gps()
self.cluster()
self.filter_isolated_points()
self.filter_time_group_overlap()
grid_points, translations = self.divide_grids()
self.copy_images(grid_points)
self.logger.info("预处理任务完成")
successful_grid_points = self.odm_monitor.process_all_grids(
grid_points, self.config.produce_dem)
self.post_process(successful_grid_points,
grid_points, translations)
except Exception as e:
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
raise
if __name__ == "__main__":
# 创建配置
config = PreprocessConfig(
image_dir=r"E:\datasets\UAV\134\project\images",
output_dir=r"G:\ODM_output\134",
cluster_eps=0.01,
cluster_min_samples=5,
# 添加时间组重叠过滤参数
time_group_overlap_threshold=0.7,
time_group_interval=timedelta(minutes=5),
filter_distance_threshold=0.001,
filter_min_neighbors=6,
filter_grid_size=0.001,
filter_dense_distance_threshold=10,
filter_time_threshold=timedelta(minutes=5),
grid_size=800,
grid_overlap=0.05,
mode="快拼模式",
produce_dem=False,
)
# 创建处理器并执行
processor = ImagePreprocessor(config)
processor.process()