first commit

This commit is contained in:
weixin_46229132 2025-04-07 21:53:50 +08:00
parent 5ba8d2ee3c
commit f48018a0b0
10 changed files with 1523 additions and 0 deletions

77
filter/cluster_filter.py Normal file
View File

@ -0,0 +1,77 @@
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
import os
import logging
class GPSCluster:
def __init__(self, gps_points, eps=0.01, min_samples=3):
"""
初始化GPS聚类器
参数:
eps: DBSCAN的邻域半径参数
min_samples: DBSCAN的最小样本数参数
"""
self.eps = eps
self.min_samples = min_samples
self.dbscan = DBSCAN(eps=eps, min_samples=min_samples)
self.scaler = StandardScaler()
self.gps_points = gps_points
self.logger = logging.getLogger('UAV_Preprocess.GPSCluster')
def fit(self):
"""
对GPS点进行聚类只保留最大的类
参数:
gps_points: 包含'lat''lon'列的DataFrame
返回:
带有聚类标签的DataFrame其中最大类标记为1其他点标记为-1
"""
self.logger.info("开始聚类")
# 提取经纬度数据
X = self.gps_points[["lon", "lat"]].values
# # 数据标准化
# X_scaled = self.scaler.fit_transform(X)
# 执行DBSCAN聚类
labels = self.dbscan.fit_predict(X)
# 找出最大类的标签(排除噪声点-1
unique_labels = [l for l in set(labels) if l != -1]
if unique_labels: # 如果有聚类
label_counts = [(l, sum(labels == l)) for l in unique_labels]
largest_label = max(label_counts, key=lambda x: x[1])[0]
# 将最大类标记为1其他都标记为-1
new_labels = (labels == largest_label).astype(int)
new_labels[new_labels == 0] = -1
else: # 如果没有聚类,全部标记为-1
new_labels = labels
# 将聚类结果添加到原始数据中
result_df = self.gps_points.copy()
result_df["cluster"] = new_labels
return result_df
def get_cluster_stats(self, clustered_points):
"""
获取聚类统计信息
参数:
clustered_points: 带有聚类标签的DataFrame
返回:
聚类统计信息的字典
"""
main_cluster = clustered_points[clustered_points["cluster"] == 1]
noise_cluster = clustered_points[clustered_points["cluster"] == -1]
self.logger.info(f"聚类完成:主要类别包含 {len(main_cluster)} 个点,"
f"噪声点 {len(noise_cluster)}")
return main_cluster

249
main.py Normal file
View File

@ -0,0 +1,249 @@
import os
import shutil
from datetime import timedelta
from dataclasses import dataclass
from typing import Dict, Tuple
import psutil
import pandas as pd
from pathlib import Path
from filter.cluster_filter import GPSCluster
from utils.gps_extractor import GPSExtractor
from utils.grid_divider import GridDivider
from utils.logger import setup_logger
from utils.visualizer import FilterVisualizer
from utils.docker_runner import DockerRunner
from post_pro.conv_obj import ConvertOBJ
@dataclass
class ProcessConfig:
"""配置类"""
image_dir: str
output_dir: str
# 聚类过滤参数
cluster_eps: float = 0.01
cluster_min_samples: int = 5
# 时间组重叠过滤参数
time_group_overlap_threshold: float = 0.7
time_group_interval: timedelta = timedelta(minutes=5)
# 孤立点过滤参数
filter_distance_threshold: float = 0.001 # 经纬度距离
filter_min_neighbors: int = 6
# 密集点过滤参数
filter_grid_size: float = 0.001
filter_dense_distance_threshold: float = 10 # 普通距离,单位:米
filter_time_threshold: timedelta = timedelta(minutes=5)
# 网格划分参数
grid_overlap: float = 0.05
grid_size: float = 500
# 几个pipline过程是否开启
mode: str = "快拼模式"
accuracy: str = "medium"
produce_dem: bool = False
class ODM_Plugin:
def __init__(self, config: ProcessConfig):
self.config = config
# 检查磁盘空间
# TODO 现在输入目录的磁盘空间也需要检查
self._check_disk_space()
# 清理并重建输出目录
if os.path.exists(config.output_dir):
self._clean_output_dir()
self._setup_output_dirs()
# 修改输入目录符合ODM要求从这里开始image_dir就是project_path
self._rename_input_dir()
self.project_path = self.config.image_dir
# 初始化其他组件
self.logger = setup_logger(config.output_dir)
self.gps_points = None
self.grid_points = None
self.visualizer = FilterVisualizer(config.output_dir)
def _clean_output_dir(self):
"""清理输出目录"""
try:
shutil.rmtree(self.config.output_dir)
print(f"已清理输出目录: {self.config.output_dir}")
except Exception as e:
print(f"清理输出目录时发生错误: {str(e)}")
raise
def _setup_output_dirs(self):
"""创建必要的输出目录结构"""
try:
# 创建主输出目录
os.makedirs(self.config.output_dir)
# 创建过滤图像保存目录
os.makedirs(os.path.join(self.config.output_dir, 'filter_imgs'))
# 创建日志目录
os.makedirs(os.path.join(self.config.output_dir, 'logs'))
print(f"已创建输出目录结构: {self.config.output_dir}")
except Exception as e:
print(f"创建输出目录时发生错误: {str(e)}")
raise
def _get_directory_size(self, path):
"""获取目录的总大小(字节)"""
total_size = 0
for dirpath, dirnames, filenames in os.walk(path):
for filename in filenames:
file_path = os.path.join(dirpath, filename)
try:
total_size += os.path.getsize(file_path)
except (OSError, FileNotFoundError):
continue
return total_size
def _check_disk_space(self):
"""检查磁盘空间是否足够"""
# 获取输入目录大小
input_size = self._get_directory_size(self.config.image_dir)
# 获取输出目录所在磁盘的剩余空间
output_drive = os.path.splitdrive(
os.path.abspath(self.config.output_dir))[0]
if not output_drive: # 处理Linux/Unix路径
output_drive = '/home'
disk_usage = psutil.disk_usage(output_drive)
free_space = disk_usage.free
# 计算所需空间输入大小的1.5倍)
required_space = input_size * 12
if free_space < required_space:
error_msg = (
f"磁盘空间不足!\n"
f"输入目录大小: {input_size / (1024**3):.2f} GB\n"
f"所需空间: {required_space / (1024**3):.2f} GB\n"
f"可用空间: {free_space / (1024**3):.2f} GB\n"
f"在驱动器 {output_drive}"
)
raise RuntimeError(error_msg)
def _rename_input_dir(self):
image_dir = Path(self.config.image_dir).resolve()
if not image_dir.exists() or not image_dir.is_dir():
raise ValueError(
f"Provided path '{image_dir}' is not a valid directory.")
# 原目录名和父路径
parent_dir = image_dir.parent
original_name = image_dir.name
# 新的 images 路径(原目录重命名为 images
images_path = parent_dir / "images"
# 重命名原目录为 images
image_dir.rename(images_path)
# 创建一个新的、和原目录同名的文件夹
new_root = parent_dir / original_name
new_root.mkdir(exist_ok=False)
# 创建 project 子文件夹
project_dir = new_root / "project"
project_dir.mkdir()
# 把 images 文件夹移动到 project 下
final_images_path = project_dir / "images"
shutil.move(str(images_path), str(final_images_path))
print(f"符合标准输入的文件夹结构已经创建好了,{final_images_path}")
return final_images_path
def extract_gps(self) -> pd.DataFrame:
"""提取GPS数据"""
self.logger.info("开始提取GPS数据")
extractor = GPSExtractor(self.project_path)
self.gps_points = extractor.extract_all_gps()
self.logger.info(f"成功提取 {len(self.gps_points)} 个GPS点")
def cluster(self):
"""使用DBSCAN对GPS点进行聚类只保留最大的类"""
previous_points = self.gps_points.copy()
clusterer = GPSCluster(
self.gps_points,
eps=self.config.cluster_eps,
min_samples=self.config.cluster_min_samples
)
self.clustered_points = clusterer.fit()
self.gps_points = clusterer.get_cluster_stats(self.clustered_points)
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "1-Clustering")
def divide_grids(self):
"""划分网格
Returns:
tuple: (grid_points, translations)
- grid_points: 网格点数据字典
- translations: 网格平移量字典
"""
grid_divider = GridDivider(
overlap=self.config.grid_overlap,
grid_size=self.config.grid_size,
project_path=self.project_path,
output_dir=self.config.output_dir
)
grids, self.grid_points = grid_divider.adjust_grid_size_and_overlap(
self.gps_points
)
grid_divider.visualize_grids(self.gps_points, grids)
grid_divider.save_image_groups(self.grid_points)
if len(grids) >= 20:
self.logger.warning("网格数量已超过20, 需要人工调整分区")
def odm_docker_runner(self):
""""运行OMD docker容器"""
self.logger.info("开始运行Docker容器")
# TODO加一些容错处理
docker_runner = DockerRunner(self.project_path)
docker_runner.run_odm_container()
def convert_obj(self):
"""转换OBJ模型"""
self.logger.info("开始转换OBJ模型")
converter = ConvertOBJ(self.config.output_dir)
converter.convert_grid_obj(self.grid_points)
def post_process(self):
"""后处理:合并或复制处理结果"""
self.logger.info("开始后处理")
self.logger.info("拷贝正射影像至输出目录")
orthophoto_tif_path = os.path.join(
self.project_path, "odm_orthophoto", "odm_orthophoto.tif")
shutil.copy(orthophoto_tif_path, self.config.output_dir)
# if self.config.mode == "三维模式":
# self.convert_obj()
# else:
# pass
def process(self):
"""执行完整的预处理流程"""
try:
self.extract_gps()
self.cluster()
self.divide_grids()
self.logger.info("==========预处理任务完成==========")
self.odm_docker_runner()
self.post_process()
except Exception as e:
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
raise

253
post_pro/conv_obj.py Normal file
View File

@ -0,0 +1,253 @@
import os
import subprocess
import json
import shutil
import logging
from pyproj import Transformer
import cv2
class ConvertOBJ:
def __init__(self, output_dir: str):
self.output_dir = output_dir
# 用于存储所有grid的UTM范围
self.ref_east = float('inf')
self.ref_north = float('inf')
# 初始化UTM到WGS84的转换器
self.transformer = Transformer.from_crs(
"EPSG:32649", "EPSG:4326", always_xy=True)
self.logger = logging.getLogger('UAV_Preprocess.ConvertOBJ')
def convert_grid_obj(self, grid_points):
"""转换每个网格的OBJ文件为OSGB格式"""
os.makedirs(os.path.join(self.output_dir,
"osgb", "Data"), exist_ok=True)
# 以第一个grid的UTM坐标作为参照系
first_grid_id = list(grid_points.keys())[0]
first_grid_dir = os.path.join(
self.output_dir,
f"grid_{first_grid_id[0]}_{first_grid_id[1]}",
"project"
)
log_file = os.path.join(
first_grid_dir, "odm_orthophoto", "odm_orthophoto_log.txt")
self.ref_east, self.ref_north = self.read_utm_offset(log_file)
for grid_id in grid_points.keys():
try:
self._convert_single_grid(grid_id, grid_points)
except Exception as e:
self.logger.error(f"网格 {grid_id} 转换失败: {str(e)}")
self._create_merged_metadata()
def _convert_single_grid(self, grid_id, grid_points):
"""转换单个网格的OBJ文件"""
# 构建相关路径
grid_name = f"grid_{grid_id[0]}_{grid_id[1]}"
project_dir = os.path.join(self.output_dir, grid_name, "project")
texturing_dir = os.path.join(project_dir, "odm_texturing")
texturing_dst_dir = os.path.join(project_dir, "odm_texturing_dst")
opensfm_dir = os.path.join(project_dir, "opensfm")
log_file = os.path.join(
project_dir, "odm_orthophoto", "odm_orthophoto_log.txt")
os.makedirs(texturing_dst_dir, exist_ok=True)
# 修改obj文件z坐标的值
min_25d_z = self.get_min_z_from_obj(os.path.join(
project_dir, 'odm_texturing_25d', 'odm_textured_model_geo.obj'))
self.modify_z_in_obj(texturing_dir, min_25d_z)
# 在新文件夹下利用UTM偏移量修改obj文件顶点坐标纹理文件下采样
utm_offset = self.read_utm_offset(log_file)
modified_obj = self.modify_obj_coordinates(
texturing_dir, texturing_dst_dir, utm_offset)
self.downsample_texture(texturing_dir, texturing_dst_dir)
# 执行格式转换Linux下osgconv有问题记得注释掉
self.logger.info(f"开始转换网格 {grid_id} 的OBJ文件")
output_osgb = os.path.join(texturing_dst_dir, "Tile.osgb")
cmd = (
f"osgconv {modified_obj} {output_osgb} "
f"--compressed --smooth --fix-transparency "
)
self.logger.info(f"执行osgconv命令{cmd}")
try:
subprocess.run(cmd, shell=True, check=True, cwd=texturing_dir)
except subprocess.CalledProcessError as e:
raise RuntimeError(f"OSGB转换失败: {str(e)}")
# 创建OSGB目录结构复制文件
osgb_base_dir = os.path.join(self.output_dir, "osgb")
data_dir = os.path.join(osgb_base_dir, "Data")
tile_dir = os.path.join(data_dir, f"Tile_{grid_id[0]}_{grid_id[1]}")
os.makedirs(tile_dir, exist_ok=True)
target_osgb = os.path.join(
tile_dir, f"Tile_{grid_id[0]}_{grid_id[1]}.osgb")
shutil.copy2(output_osgb, target_osgb)
def _create_merged_metadata(self):
"""创建合并后的metadata.xml文件"""
# 转换为WGS84经纬度
center_lon, center_lat = self.transformer.transform(
self.ref_east, self.ref_north)
metadata_content = f"""<?xml version="1.0" encoding="utf-8"?>
<ModelMetadata version="1">
<SRS>EPSG:4326</SRS>
<SRSOrigin>{center_lon},{center_lat},0</SRSOrigin>
<Texture>
<ColorSource>Visible</ColorSource>
</Texture>
</ModelMetadata>"""
metadata_file = os.path.join(self.output_dir, "osgb", "metadata.xml")
with open(metadata_file, 'w', encoding='utf-8') as f:
f.write(metadata_content)
def read_utm_offset(self, log_file: str) -> tuple:
"""读取UTM偏移量"""
try:
east_offset = None
north_offset = None
with open(log_file, 'r') as f:
lines = f.readlines()
for i, line in enumerate(lines):
if 'utm_north_offset' in line and i + 1 < len(lines):
north_offset = float(lines[i + 1].strip())
elif 'utm_east_offset' in line and i + 1 < len(lines):
east_offset = float(lines[i + 1].strip())
if east_offset is None or north_offset is None:
raise ValueError("未找到UTM偏移量")
return east_offset, north_offset
except Exception as e:
self.logger.error(f"读取UTM偏移量时发生错误: {str(e)}")
raise
def modify_obj_coordinates(self, texturing_dir: str, texturing_dst_dir: str, utm_offset: tuple) -> str:
"""修改obj文件中的顶点坐标使用相对坐标系"""
obj_file = os.path.join(
texturing_dir, "odm_textured_model_modified.obj")
obj_dst_file = os.path.join(
texturing_dst_dir, "odm_textured_model_geo_utm.obj")
if not os.path.exists(obj_file):
raise FileNotFoundError(f"找不到OBJ文件: {obj_file}")
shutil.copy2(os.path.join(texturing_dir, "odm_textured_model_geo.mtl"),
os.path.join(texturing_dst_dir, "odm_textured_model_geo.mtl"))
east_offset, north_offset = utm_offset
self.logger.info(
f"UTM坐标偏移{east_offset - self.ref_east}, {north_offset - self.ref_north}")
try:
with open(obj_file, 'r') as f_in, open(obj_dst_file, 'w') as f_out:
for line in f_in:
if line.startswith('v '):
# 处理顶点坐标行
parts = line.strip().split()
# 使用相对于整体最小UTM坐标的偏移
x = float(parts[1]) + (east_offset - self.ref_east)
y = float(parts[2]) + (north_offset - self.ref_north)
z = float(parts[3])
f_out.write(f'v {x:.6f} {z:.6f} {-y:.6f}\n')
elif line.startswith('vn '): # 处理法线向量
parts = line.split()
nx = float(parts[1])
ny = float(parts[2])
nz = float(parts[3])
# 同步反转法线的 Y 轴
new_line = f"vn {nx} {nz} {-ny}\n"
f_out.write(new_line)
else:
# 其他行直接写入
f_out.write(line)
return obj_dst_file
except Exception as e:
self.logger.error(f"修改obj坐标时发生错误: {str(e)}")
raise
def downsample_texture(self, src_dir: str, dst_dir: str):
"""复制并重命名纹理文件对大于100MB的文件进行多次下采样直到文件小于100MB
Args:
src_dir: 源纹理目录
dst_dir: 目标纹理目录
"""
for file in os.listdir(src_dir):
if file.lower().endswith(('.png')):
src_path = os.path.join(src_dir, file)
dst_path = os.path.join(dst_dir, file)
# 检查文件大小(以字节为单位)
file_size = os.path.getsize(src_path)
if file_size <= 100 * 1024 * 1024: # 如果文件小于等于100MB直接复制
shutil.copy2(src_path, dst_path)
else:
# 文件大于100MB进行下采样
img = cv2.imread(src_path, cv2.IMREAD_UNCHANGED)
if_first_ds = True
while file_size > 100 * 1024 * 1024: # 大于100MB
self.logger.info(f"纹理文件 {file} 大于100MB进行下采样")
if if_first_ds:
# 计算新的尺寸长宽各变为1/4
new_size = (img.shape[1] // 4,
img.shape[0] // 4) # 逐步减小尺寸
# 使用双三次插值进行下采样
resized_img = cv2.resize(
img, new_size, interpolation=cv2.INTER_CUBIC)
if_first_ds = False
else:
# 计算新的尺寸长宽各变为1/2
new_size = (img.shape[1] // 2,
img.shape[0] // 2) # 逐步减小尺寸
# 使用双三次插值进行下采样
resized_img = cv2.resize(
img, new_size, interpolation=cv2.INTER_CUBIC)
# 更新文件路径为下采样后的路径
cv2.imwrite(dst_path, resized_img, [
cv2.IMWRITE_PNG_COMPRESSION, 9])
# 更新文件大小和图像
file_size = os.path.getsize(dst_path)
img = cv2.imread(dst_path, cv2.IMREAD_UNCHANGED)
self.logger.info(
f"下采样后文件大小: {file_size / (1024 * 1024):.2f} MB")
def get_min_z_from_obj(self, file_path):
min_z = float('inf') # 初始值设为无穷大
with open(file_path, 'r') as obj_file:
for line in obj_file:
# 检查每一行是否是顶点定义(以 'v ' 开头)
if line.startswith('v '):
# 获取顶点坐标
parts = line.split()
# 将z值转换为浮动数字
z = float(parts[3])
# 更新最小z值
if z < min_z:
min_z = z
return min_z
def modify_z_in_obj(self, texturing_dir, min_25d_z):
obj_file = os.path.join(texturing_dir, 'odm_textured_model_geo.obj')
output_file = os.path.join(
texturing_dir, 'odm_textured_model_modified.obj')
with open(obj_file, 'r') as f_in, open(output_file, 'w') as f_out:
for line in f_in:
if line.startswith('v '): # 顶点坐标行
parts = line.strip().split()
x = float(parts[1])
y = float(parts[2])
z = float(parts[3])
if z < min_25d_z:
z = min_25d_z
f_out.write(f"v {x} {y} {z}\n")
else:
f_out.write(line)

263
post_pro/conv_obj2.py Normal file
View File

@ -0,0 +1,263 @@
import os
import subprocess
import json
import shutil
import logging
from pyproj import Transformer
import cv2
class ConvertOBJ:
def __init__(self, output_dir: str):
self.output_dir = output_dir
# 用于存储所有grid的UTM范围
self.ref_east = float('inf')
self.ref_north = float('inf')
# 初始化UTM到WGS84的转换器
self.transformer = Transformer.from_crs(
"EPSG:32649", "EPSG:4326", always_xy=True)
self.logger = logging.getLogger('UAV_Preprocess.ConvertOBJ')
def convert_grid_obj(self, grid_points):
"""转换每个网格的OBJ文件为OSGB格式"""
os.makedirs(os.path.join(self.output_dir,
"osgb", "Data"), exist_ok=True)
# 以第一个grid的UTM坐标作为参照系
first_grid_id = list(grid_points.keys())[0]
first_grid_dir = os.path.join(
self.output_dir,
f"grid_{first_grid_id[0]}_{first_grid_id[1]}",
"project"
)
log_file = os.path.join(
first_grid_dir, "odm_orthophoto", "odm_orthophoto_log.txt")
self.ref_east, self.ref_north = self.read_utm_offset(log_file)
for grid_id in grid_points.keys():
try:
self._convert_single_grid(grid_id, grid_points)
except Exception as e:
self.logger.error(f"网格 {grid_id} 转换失败: {str(e)}")
self._create_merged_metadata()
def _convert_single_grid(self, grid_id, grid_points):
"""转换单个网格的OBJ文件"""
# 构建相关路径
grid_name = f"grid_{grid_id[0]}_{grid_id[1]}"
project_dir = os.path.join(self.output_dir, grid_name, "project")
texturing_dir = os.path.join(project_dir, "odm_texturing")
texturing_dst_dir = os.path.join(project_dir, "odm_texturing_dst")
split_obj_dir = os.path.join(texturing_dst_dir, "split_obj")
opensfm_dir = os.path.join(project_dir, "opensfm")
log_file = os.path.join(
project_dir, "odm_orthophoto", "odm_orthophoto_log.txt")
os.makedirs(texturing_dst_dir, exist_ok=True)
# 修改obj文件z坐标的值
min_25d_z = self.get_min_z_from_obj(os.path.join(
project_dir, 'odm_texturing_25d', 'odm_textured_model_geo.obj'))
self.modify_z_in_obj(texturing_dir, min_25d_z)
# 在新文件夹下利用UTM偏移量修改obj文件顶点坐标纹理文件下采样
utm_offset = self.read_utm_offset(log_file)
modified_obj = self.modify_obj_coordinates(
texturing_dir, texturing_dst_dir, utm_offset)
self.downsample_texture(texturing_dir, texturing_dst_dir)
# 将obj文件进行切片
self.logger.info(f"开始切片网格 {grid_id} 的OBJ文件")
os.makedirs(split_obj_dir)
cmd = (
f"D:\software\Obj2Tiles\Obj2Tiles.exe --stage Splitting --lods 1 --divisions 3 "
f"{modified_obj} {split_obj_dir}"
)
subprocess.run(cmd, check=True)
# 执行格式转换Linux下osgconv有问题记得注释掉
self.logger.info(f"开始转换网格 {grid_id} 的OBJ文件")
# 先获取split_obj_dir下的所有obj文件
obj_lod_dir = os.path.join(split_obj_dir, "LOD-0")
obj_files = [f for f in os.listdir(
obj_lod_dir) if f.endswith('.obj')]
for obj_file in obj_files:
obj_path = os.path.join(obj_lod_dir, obj_file)
osgb_file = os.path.splitext(obj_file)[0] + '.osgb'
osgb_path = os.path.join(split_obj_dir, osgb_file)
# 执行 osgconv 命令
subprocess.run(['osgconv', obj_path, osgb_path], check=True)
# 创建OSGB目录结构复制文件
osgb_base_dir = os.path.join(self.output_dir, "osgb")
data_dir = os.path.join(osgb_base_dir, "Data")
for obj_file in obj_files:
obj_file_name = os.path.splitext(obj_file)[0]
tile_dirs = os.path.join(data_dir, f"{obj_file_name}")
os.makedirs(tile_dirs, exist_ok=True)
shutil.copy2(os.path.join(
split_obj_dir, obj_file_name+".osgb"), tile_dirs)
def _create_merged_metadata(self):
"""创建合并后的metadata.xml文件"""
# 转换为WGS84经纬度
center_lon, center_lat = self.transformer.transform(
self.ref_east, self.ref_north)
metadata_content = f"""<?xml version="1.0" encoding="utf-8"?>
<ModelMetadata version="1">
<SRS>EPSG:4326</SRS>
<SRSOrigin>{center_lon},{center_lat},0</SRSOrigin>
<Texture>
<ColorSource>Visible</ColorSource>
</Texture>
</ModelMetadata>"""
metadata_file = os.path.join(self.output_dir, "osgb", "metadata.xml")
with open(metadata_file, 'w', encoding='utf-8') as f:
f.write(metadata_content)
def read_utm_offset(self, log_file: str) -> tuple:
"""读取UTM偏移量"""
try:
east_offset = None
north_offset = None
with open(log_file, 'r') as f:
lines = f.readlines()
for i, line in enumerate(lines):
if 'utm_north_offset' in line and i + 1 < len(lines):
north_offset = float(lines[i + 1].strip())
elif 'utm_east_offset' in line and i + 1 < len(lines):
east_offset = float(lines[i + 1].strip())
if east_offset is None or north_offset is None:
raise ValueError("未找到UTM偏移量")
return east_offset, north_offset
except Exception as e:
self.logger.error(f"读取UTM偏移量时发生错误: {str(e)}")
raise
def modify_obj_coordinates(self, texturing_dir: str, texturing_dst_dir: str, utm_offset: tuple) -> str:
"""修改obj文件中的顶点坐标使用相对坐标系"""
obj_file = os.path.join(
texturing_dir, "odm_textured_model_modified.obj")
obj_dst_file = os.path.join(
texturing_dst_dir, "odm_textured_model_geo_utm.obj")
if not os.path.exists(obj_file):
raise FileNotFoundError(f"找不到OBJ文件: {obj_file}")
shutil.copy2(os.path.join(texturing_dir, "odm_textured_model_geo.mtl"),
os.path.join(texturing_dst_dir, "odm_textured_model_geo.mtl"))
east_offset, north_offset = utm_offset
self.logger.info(
f"UTM坐标偏移{east_offset - self.ref_east}, {north_offset - self.ref_north}")
try:
with open(obj_file, 'r') as f_in, open(obj_dst_file, 'w') as f_out:
for line in f_in:
if line.startswith('v '):
# 处理顶点坐标行
parts = line.strip().split()
# 使用相对于整体最小UTM坐标的偏移
x = float(parts[1]) + (east_offset - self.ref_east)
y = float(parts[2]) + (north_offset - self.ref_north)
z = float(parts[3])
f_out.write(f'v {x:.6f} {z:.6f} {-y:.6f}\n')
elif line.startswith('vn '): # 处理法线向量
parts = line.split()
nx = float(parts[1])
ny = float(parts[2])
nz = float(parts[3])
# 同步反转法线的 Y 轴
new_line = f"vn {nx} {nz} {-ny}\n"
f_out.write(new_line)
else:
# 其他行直接写入
f_out.write(line)
return obj_dst_file
except Exception as e:
self.logger.error(f"修改obj坐标时发生错误: {str(e)}")
raise
def downsample_texture(self, src_dir: str, dst_dir: str):
"""复制并重命名纹理文件对大于100MB的文件进行多次下采样直到文件小于100MB
Args:
src_dir: 源纹理目录
dst_dir: 目标纹理目录
"""
for file in os.listdir(src_dir):
if file.lower().endswith(('.png')):
src_path = os.path.join(src_dir, file)
dst_path = os.path.join(dst_dir, file)
# 检查文件大小(以字节为单位)
file_size = os.path.getsize(src_path)
if file_size <= 100 * 1024 * 1024: # 如果文件小于等于100MB直接复制
shutil.copy2(src_path, dst_path)
else:
# 文件大于100MB进行下采样
img = cv2.imread(src_path, cv2.IMREAD_UNCHANGED)
if_first_ds = True
while file_size > 100 * 1024 * 1024: # 大于100MB
self.logger.info(f"纹理文件 {file} 大于100MB进行下采样")
if if_first_ds:
# 计算新的尺寸长宽各变为1/4
new_size = (img.shape[1] // 4,
img.shape[0] // 4) # 逐步减小尺寸
# 使用双三次插值进行下采样
resized_img = cv2.resize(
img, new_size, interpolation=cv2.INTER_CUBIC)
if_first_ds = False
else:
# 计算新的尺寸长宽各变为1/2
new_size = (img.shape[1] // 2,
img.shape[0] // 2) # 逐步减小尺寸
# 使用双三次插值进行下采样
resized_img = cv2.resize(
img, new_size, interpolation=cv2.INTER_CUBIC)
# 更新文件路径为下采样后的路径
cv2.imwrite(dst_path, resized_img, [
cv2.IMWRITE_PNG_COMPRESSION, 9])
# 更新文件大小和图像
file_size = os.path.getsize(dst_path)
img = cv2.imread(dst_path, cv2.IMREAD_UNCHANGED)
self.logger.info(
f"下采样后文件大小: {file_size / (1024 * 1024):.2f} MB")
def get_min_z_from_obj(self, file_path):
min_z = float('inf') # 初始值设为无穷大
with open(file_path, 'r') as obj_file:
for line in obj_file:
# 检查每一行是否是顶点定义(以 'v ' 开头)
if line.startswith('v '):
# 获取顶点坐标
parts = line.split()
# 将z值转换为浮动数字
z = float(parts[3])
# 更新最小z值
if z < min_z:
min_z = z
return min_z
def modify_z_in_obj(self, texturing_dir, min_25d_z):
obj_file = os.path.join(texturing_dir, 'odm_textured_model_geo.obj')
output_file = os.path.join(
texturing_dir, 'odm_textured_model_modified.obj')
with open(obj_file, 'r') as f_in, open(output_file, 'w') as f_out:
for line in f_in:
if line.startswith('v '): # 顶点坐标行
parts = line.strip().split()
x = float(parts[1])
y = float(parts[2])
z = float(parts[3])
if z < min_25d_z:
z = min_25d_z
f_out.write(f"v {x} {y} {z}\n")
else:
f_out.write(line)

59
run.py Normal file
View File

@ -0,0 +1,59 @@
import argparse
from datetime import timedelta
from main import ProcessConfig, ODM_Plugin
def parse_args():
parser = argparse.ArgumentParser(description='ODM预处理工具')
# 必需参数
# parser.add_argument('--image_dir', required=True, help='输入图片目录路径')
# parser.add_argument('--output_dir', required=True, help='输出目录路径')
parser.add_argument(
'--image_dir', default=r'E:\datasets\UAV\199', help='输入图片目录路径')
parser.add_argument(
'--output_dir', default=r'G:\ODM_output\test2', help='输出目录路径')
# 可选参数
parser.add_argument('--mode', default='三维模式',
choices=['快拼模式', '三维模式'], help='处理模式')
parser.add_argument('--accuracy', default='medium',
choices=['high', 'medium', 'low'], help='精度')
parser.add_argument('--grid_size', type=float, default=800, help='网格大小(米)')
parser.add_argument('--grid_overlap', type=float,
default=0.05, help='网格重叠率')
args = parser.parse_args()
return args
def main():
args = parse_args()
# 创建配置
config = ProcessConfig(
image_dir=args.image_dir,
output_dir=args.output_dir,
mode=args.mode,
accuracy=args.accuracy,
grid_size=args.grid_size,
grid_overlap=args.grid_overlap,
# 其他参数使用默认值
cluster_eps=0.01,
cluster_min_samples=5,
time_group_overlap_threshold=0.7,
time_group_interval=timedelta(minutes=5),
filter_distance_threshold=0.001,
filter_min_neighbors=6,
filter_grid_size=0.001,
filter_dense_distance_threshold=10,
filter_time_threshold=timedelta(minutes=5),
)
# 创建处理器并执行
processor = ODM_Plugin(config)
processor.process()
if __name__ == '__main__':
main()

89
utils/docker_runner.py Normal file
View File

@ -0,0 +1,89 @@
import docker
import os
import logging
from collections import deque
class DockerRunner:
def __init__(self, project_path: str):
"""
初始化 DockerRunner
Args:
project_path (str): 项目路径将挂载到 Docker 容器中
"""
self.project_path = project_path
self.logger = logging.getLogger("DockerRunner")
self.docker_client = docker.from_env()
def run_odm_container(self):
"""
使用 Docker SDK 运行 OpenDroneMap 容器
"""
try:
self.logger.info("开始运行docker run指令")
# 挂载路径
volume_mapping = {
self.project_path: {
'bind': '/datasets',
'mode': 'rw'
}
}
# Docker 命令参数
command = [
"--project-path", "/datasets",
"project",
"--max-concurrency", "15",
"--force-gps",
"--split-overlap", "0",
]
# 运行容器
container = self.docker_client.containers.run(
image="opendronemap/odm:gpu",
command=command,
volumes=volume_mapping,
device_requests=[
docker.types.DeviceRequest(
count=-1, capabilities=[["gpu"]])
], # 添加 GPU 支持
remove=False, # 容器运行结束后不自动删除,便于获取日志
tty=True,
detach=True # 后台运行
)
# 等待容器运行完成
exit_status = container.wait()
if exit_status["StatusCode"] != 0:
self.logger.error(f"容器运行失败,退出状态码: {exit_status['StatusCode']}")
# 获取容器的错误日志
error_logs = container.logs(
stderr=True).decode("utf-8").splitlines()
self.logger.error("容器运行失败的详细错误日志:")
for line in error_logs:
self.logger.error(line)
else:
# 获取所有日志
logs = container.logs().decode("utf-8").splitlines()
# 输出最后 50 行日志
self.logger.info("容器运行完成,以下是最后 50 行日志:")
for line in logs[-50:]:
self.logger.info(line)
# 删除容器
container.remove()
except Exception as e:
self.logger.error(f"运行 Docker 容器时发生错误: {str(e)}", exc_info=True)
raise
if __name__ == "__main__":
# 示例用法
project_path = r"E:\datasets\UAV\199"
docker_runner = DockerRunner(project_path)
docker_runner.run_odm_container()

96
utils/gps_extractor.py Normal file
View File

@ -0,0 +1,96 @@
import os
from PIL import Image
import piexif
import logging
import pandas as pd
from datetime import datetime
class GPSExtractor:
"""从图像文件提取GPS坐标和拍摄日期"""
def __init__(self, project_path):
self.image_dir = os.path.join(project_path, 'project', 'images')
self.logger = logging.getLogger('UAV_Preprocess.GPSExtractor')
@staticmethod
def _dms_to_decimal(dms):
"""将DMS格式转换为十进制度"""
return dms[0][0] / dms[0][1] + (dms[1][0] / dms[1][1]) / 60 + (dms[2][0] / dms[2][1]) / 3600
@staticmethod
def _parse_datetime(datetime_str):
"""解析EXIF中的日期时间字符串"""
try:
# EXIF日期格式通常为 'YYYY:MM:DD HH:MM:SS'
return datetime.strptime(datetime_str.decode(), '%Y:%m:%d %H:%M:%S')
except Exception:
return None
def get_gps_and_date(self, image_path):
"""提取单张图片的GPS坐标和拍摄日期"""
try:
image = Image.open(image_path)
exif_data = piexif.load(image.info['exif'])
# 提取GPS信息
gps_info = exif_data.get("GPS", {})
lat = lon = None
if gps_info:
lat = self._dms_to_decimal(gps_info.get(2, []))
lon = self._dms_to_decimal(gps_info.get(4, []))
self.logger.debug(
f"成功提取图片GPS坐标: {image_path} - 纬度: {lat}, 经度: {lon}")
# 提取拍摄日期
date_info = None
if "Exif" in exif_data:
# 优先使用DateTimeOriginal
date_str = exif_data["Exif"].get(36867) # DateTimeOriginal
if not date_str:
# 备选DateTime
date_str = exif_data["Exif"].get(
36868) # DateTimeDigitized
if not date_str:
# 最后使用基本DateTime
date_str = exif_data["0th"].get(306) # DateTime
if date_str:
date_info = self._parse_datetime(date_str)
self.logger.debug(
f"成功提取图片拍摄日期: {image_path} - {date_info}")
if not gps_info:
self.logger.warning(f"图片无GPS信息: {image_path}")
if not date_info:
self.logger.warning(f"图片无拍摄日期信息: {image_path}")
return lat, lon, date_info
except Exception as e:
self.logger.error(f"提取图片信息时发生错误: {image_path} - {str(e)}")
return None, None, None
def extract_all_gps(self):
"""提取所有图片的GPS坐标和拍摄日期"""
self.logger.info(f"开始从目录提取GPS坐标和拍摄日期: {self.image_dir}")
gps_data = []
total_images = 0
successful_extractions = 0
for image_file in os.listdir(self.image_dir):
total_images += 1
image_path = os.path.join(self.image_dir, image_file)
lat, lon, date = self.get_gps_and_date(image_path)
if lat and lon: # 仍然以GPS信息作为主要判断依据
successful_extractions += 1
gps_data.append({
'file': image_file,
'lat': lat,
'lon': lon,
'date': date
})
self.logger.info(
f"GPS坐标和拍摄日期提取完成 - 总图片数: {total_images}, 成功提取: {successful_extractions}, 失败: {total_images - successful_extractions}")
return pd.DataFrame(gps_data)

249
utils/grid_divider.py Normal file
View File

@ -0,0 +1,249 @@
import logging
from geopy.distance import geodesic
import matplotlib.pyplot as plt
import os
class GridDivider:
"""划分网格,并将图片分配到对应网格"""
def __init__(self, overlap, grid_size, project_path, output_dir):
self.overlap = overlap
self.grid_size = grid_size
self.project_path = project_path
self.output_dir = output_dir
self.logger = logging.getLogger('UAV_Preprocess.GridDivider')
self.logger.info(f"初始化网格划分器,重叠率: {overlap}")
self.num_grids_width = 0 # 添加网格数量属性
self.num_grids_height = 0
def adjust_grid_size_and_overlap(self, points_df):
"""动态调整网格重叠率"""
grids = self.adjust_grid_size(points_df)
self.logger.info(f"开始动态调整网格重叠率,初始重叠率: {self.overlap}")
while True:
# 使用调整好的网格大小划分网格
grids = self.divide_grids(points_df)
grid_points, multiple_grid_points = self.assign_to_grids(
points_df, grids)
if len(grids) == 1:
self.logger.info(f"网格数量为1跳过重叠率调整")
break
elif multiple_grid_points < 0.1*len(points_df):
self.overlap += 0.02
self.logger.info(f"重叠率增加到: {self.overlap}")
else:
self.logger.info(
f"找到合适的重叠率: {self.overlap}, 有{multiple_grid_points}个点被分配到多个网格")
break
return grids, grid_points
def adjust_grid_size(self, points_df):
"""动态调整网格大小
Args:
points_df: 包含GPS点的DataFrame
Returns:
tuple: (grids, translations, grid_points, final_grid_size)
"""
self.logger.info(f"开始动态调整网格大小,初始大小: {self.grid_size}")
while True:
# 使用当前grid_size划分网格
grids = self.divide_grids(points_df)
grid_points, multiple_grid_points = self.assign_to_grids(
points_df, grids)
# 检查每个网格中的点数
max_points = 0
for grid_id, points in grid_points.items():
max_points = max(max_points, len(points))
self.logger.info(
f"当前网格大小: {self.grid_size}米, 单个网格最大点数: {max_points}")
# 如果最大点数超过1600减小网格大小
if max_points > 1600:
self.grid_size -= 100
self.logger.info(f"点数超过1500减小网格大小至: {self.grid_size}")
if self.grid_size < 500: # 设置一个最小网格大小限制
self.logger.warning("网格大小已达到最小值500米停止调整")
break
else:
self.logger.info(f"找到合适的网格大小: {self.grid_size}")
break
return grids
def divide_grids(self, points_df):
"""计算边界框并划分网格
Returns:
tuple: (grids, translations)
- grids: 网格边界列表
- translations: 网格平移量字典
"""
self.logger.info("开始划分网格")
min_lat, max_lat = points_df['lat'].min(), points_df['lat'].max()
min_lon, max_lon = points_df['lon'].min(), points_df['lon'].max()
# 计算区域的实际距离(米)
width = geodesic((min_lat, min_lon), (min_lat, max_lon)).meters
height = geodesic((min_lat, min_lon), (max_lat, min_lon)).meters
self.logger.info(f"区域宽度: {width:.2f}米, 高度: {height:.2f}")
# 精细调整网格的长宽避免出现2*grid_size-1的情况的影响
grid_size_lt = [self.grid_size - 200, self.grid_size - 100,
self.grid_size, self.grid_size + 100, self.grid_size + 200]
width_modulus_lt = [width % grid_size for grid_size in grid_size_lt]
grid_width = grid_size_lt[width_modulus_lt.index(
min(width_modulus_lt))]
height_modulus_lt = [height % grid_size for grid_size in grid_size_lt]
grid_height = grid_size_lt[height_modulus_lt.index(
min(height_modulus_lt))]
self.logger.info(f"网格宽度: {grid_width:.2f}米, 网格高度: {grid_height:.2f}")
# 计算需要划分的网格数量
self.num_grids_width = max(int(width / grid_width), 1)
self.num_grids_height = max(int(height / grid_height), 1)
# 计算每个网格对应的经纬度步长
lat_step = (max_lat - min_lat) / self.num_grids_height
lon_step = (max_lon - min_lon) / self.num_grids_width
grids = []
# 先创建所有网格
for i in range(self.num_grids_height):
for j in range(self.num_grids_width):
grid_min_lat = min_lat + i * lat_step - self.overlap * lat_step
grid_max_lat = min_lat + \
(i + 1) * lat_step + self.overlap * lat_step
grid_min_lon = min_lon + j * lon_step - self.overlap * lon_step
grid_max_lon = min_lon + \
(j + 1) * lon_step + self.overlap * lon_step
grid_bounds = (grid_min_lat, grid_max_lat,
grid_min_lon, grid_max_lon)
grids.append(grid_bounds)
self.logger.debug(
f"网格[{i},{j}]: 纬度[{grid_min_lat:.6f}, {grid_max_lat:.6f}], "
f"经度[{grid_min_lon:.6f}, {grid_max_lon:.6f}]"
)
self.logger.info(
f"成功划分为 {len(grids)} 个网格 ({self.num_grids_width}x{self.num_grids_height})")
return grids
def assign_to_grids(self, points_df, grids):
"""将点分配到对应网格"""
self.logger.info(f"开始将 {len(points_df)} 个点分配到网格中")
grid_points = {} # 使用字典存储每个网格的点
points_assigned = 0
multiple_grid_points = 0
for i in range(self.num_grids_height):
for j in range(self.num_grids_width):
grid_points[(i, j)] = [] # 使用(i,j)元组
for _, point in points_df.iterrows():
point_assigned = False
for i in range(self.num_grids_height):
for j in range(self.num_grids_width):
grid_idx = i * self.num_grids_width + j
min_lat, max_lat, min_lon, max_lon = grids[grid_idx]
if min_lat <= point['lat'] <= max_lat and min_lon <= point['lon'] <= max_lon:
grid_points[(i, j)].append(point.to_dict())
if point_assigned:
multiple_grid_points += 1
else:
points_assigned += 1
point_assigned = True
# 记录每个网格的点数
for grid_id, points in grid_points.items():
self.logger.info(f"网格 {grid_id} 包含 {len(points)} 个点")
self.logger.info(
f"点分配完成: 总点数 {len(points_df)}, "
f"成功分配 {points_assigned} 个点, "
f"{multiple_grid_points} 个点被分配到多个网格"
)
return grid_points, multiple_grid_points
def visualize_grids(self, points_df, grids):
"""可视化网格划分和GPS点的分布"""
self.logger.info("开始可视化网格划分")
plt.figure(figsize=(12, 8))
# 绘制GPS点
plt.scatter(points_df['lon'], points_df['lat'],
c='blue', s=10, alpha=0.6, label='GPS points')
# 绘制网格
for i in range(self.num_grids_height):
for j in range(self.num_grids_width):
grid_idx = i * self.num_grids_width + j
min_lat, max_lat, min_lon, max_lon = grids[grid_idx]
# 计算网格的实际长度和宽度(米)
width = geodesic((min_lat, min_lon), (min_lat, max_lon)).meters
height = geodesic((min_lat, min_lon),
(max_lat, min_lon)).meters
plt.plot([min_lon, max_lon, max_lon, min_lon, min_lon],
[min_lat, min_lat, max_lat, max_lat, min_lat],
'r-', alpha=0.5)
# 在网格中心添加网格编号和尺寸信息
center_lon = (min_lon + max_lon) / 2
center_lat = (min_lat + max_lat) / 2
plt.text(center_lon, center_lat,
f"({i},{j})\n{width:.0f}m×{height:.0f}m", # 显示(i,j)和尺寸
horizontalalignment='center',
verticalalignment='center',
fontsize=8)
plt.title('Grid Division and GPS Point Distribution')
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.legend()
plt.grid(True)
# 如果提供了输出目录,保存图像
if self.output_dir:
save_path = os.path.join(
self.output_dir, 'filter_imgs', 'grid_division.png')
plt.savefig(save_path, dpi=300, bbox_inches='tight')
self.logger.info(f"网格划分可视化图已保存至: {save_path}")
plt.close()
def save_image_groups(self, grid_points, output_file_name="image_groups.txt"):
"""保存图像分组信息到文件
Args:
grid_points (dict): 每个网格的点信息键为(i, j)值为点的列表
output_file (str): 输出文件路径
"""
self.logger.info(f"开始保存图像分组信息到 {output_file_name}")
output_file = os.path.join(
self.project_path, 'project', output_file_name)
with open(output_file, 'w') as f:
for (i, j), points in grid_points.items():
# 计算组编号(按行展开的顺序)
group_id = i * self.num_grids_width + j + 1
for point in points:
image_name = point.get('file', 'unknown')
f.write(f"{image_name} {group_id}\n")
self.logger.info(f"图像分组信息已保存到 {output_file}")

36
utils/logger.py Normal file
View File

@ -0,0 +1,36 @@
import logging
import os
from datetime import datetime
def setup_logger(output_dir):
# 创建logs目录
log_dir = os.path.join(output_dir, 'logs')
# 创建日志文件名(包含时间戳)
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
log_file = os.path.join(log_dir, f'preprocess_{timestamp}.log')
# 配置日志格式
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
# 配置文件处理器
file_handler = logging.FileHandler(log_file, encoding='utf-8')
file_handler.setFormatter(formatter)
# 配置控制台处理器
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
# 获取根日志记录器
logger = logging.getLogger('UAV_Preprocess')
logger.setLevel(logging.INFO)
# 添加处理器
logger.addHandler(file_handler)
logger.addHandler(console_handler)
return logger

152
utils/visualizer.py Normal file
View File

@ -0,0 +1,152 @@
import os
import matplotlib.pyplot as plt
import pandas as pd
import logging
from typing import Optional
from pyproj import Transformer
class FilterVisualizer:
"""过滤结果可视化器"""
def __init__(self, output_dir: str):
"""
初始化可视化器
Args:
output_dir: 输出目录路径
"""
self.output_dir = output_dir
self.logger = logging.getLogger('UAV_Preprocess.Visualizer')
# 创建坐标转换器
self.transformer = Transformer.from_crs(
"EPSG:4326", # WGS84经纬度坐标系
"EPSG:32649", # UTM49N
always_xy=True
)
def _convert_to_utm(self, lon: pd.Series, lat: pd.Series) -> tuple:
"""
将经纬度坐标转换为UTM坐标
Args:
lon: 经度序列
lat: 纬度序列
Returns:
tuple: (x坐标, y坐标)
"""
return self.transformer.transform(lon, lat)
def visualize_filter_step(self,
current_points: pd.DataFrame,
previous_points: pd.DataFrame,
step_name: str,
save_name: Optional[str] = None):
"""
可视化单个过滤步骤的结果
Args:
current_points: 当前步骤后的点
previous_points: 上一步骤的点
step_name: 步骤名称
save_name: 保存文件名默认为step_name
"""
self.logger.info(f"开始生成{step_name}的可视化结果")
# 找出被过滤掉的点
filtered_files = set(
previous_points['file']) - set(current_points['file'])
filtered_points = previous_points[previous_points['file'].isin(
filtered_files)]
# 转换坐标到UTM
current_x, current_y = self._convert_to_utm(
current_points['lon'], current_points['lat'])
filtered_x, filtered_y = self._convert_to_utm(
filtered_points['lon'], filtered_points['lat'])
# 创建图形
plt.rcParams['font.sans-serif'] = ['SimHei'] # 黑体
plt.rcParams['axes.unicode_minus'] = False
plt.figure(figsize=(20, 16))
# 绘制保留的点
plt.scatter(current_x, current_y,
color='blue', label='保留的点',
alpha=0.6, s=50)
# 绘制被过滤的点
if not filtered_points.empty:
plt.scatter(filtered_x, filtered_y,
color='red', marker='x', label='过滤的点',
alpha=0.6, s=100)
# 设置图形属性
plt.title(f"{step_name}后的GPS点\n"
f"(过滤: {len(filtered_points)}, 保留: {len(current_points)})",
fontsize=14)
plt.xlabel("东向坐标 (米)", fontsize=12)
plt.ylabel("北向坐标 (米)", fontsize=12)
plt.grid(True)
# 添加统计信息
stats_text = (
f"原始点数: {len(previous_points)}\n"
f"过滤点数: {len(filtered_points)}\n"
f"保留点数: {len(current_points)}\n"
f"过滤率: {len(filtered_points)/len(previous_points)*100:.1f}%"
)
plt.figtext(0.02, 0.02, stats_text, fontsize=10,
bbox=dict(facecolor='white', alpha=0.8))
# 添加图例
plt.legend(loc='upper right', fontsize=10)
# 调整布局
plt.tight_layout()
# 保存图形
save_name = save_name or step_name.lower().replace(' ', '_')
save_path = os.path.join(
self.output_dir, 'filter_imgs', f'filter_{save_name}.png')
plt.savefig(save_path, dpi=300, bbox_inches='tight')
plt.close()
self.logger.info(
f"{step_name}过滤可视化结果已保存至 {save_path}\n"
f"过滤掉 {len(filtered_points)} 个点,"
f"保留 {len(current_points)} 个点,"
f"过滤率 {len(filtered_points)/len(previous_points)*100:.1f}%"
)
if __name__ == '__main__':
# 测试代码
import numpy as np
from datetime import datetime
# 创建测试数据
np.random.seed(42)
n_points = 1000
# 生成随机点
test_data = pd.DataFrame({
'lon': np.random.uniform(120, 121, n_points),
'lat': np.random.uniform(30, 31, n_points),
'file': [f'img_{i}.jpg' for i in range(n_points)],
'date': [datetime.now() for _ in range(n_points)]
})
# 随机选择点作为过滤后的结果
filtered_data = test_data.sample(n=800)
# 测试可视化
visualizer = FilterVisualizer('test_output')
os.makedirs('test_output', exist_ok=True)
visualizer.visualize_filter_step(
filtered_data,
test_data,
"Test Filter"
)