first commit
This commit is contained in:
parent
5ba8d2ee3c
commit
f48018a0b0
77
filter/cluster_filter.py
Normal file
77
filter/cluster_filter.py
Normal file
@ -0,0 +1,77 @@
|
||||
from sklearn.cluster import DBSCAN
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
import os
|
||||
import logging
|
||||
|
||||
|
||||
class GPSCluster:
|
||||
def __init__(self, gps_points, eps=0.01, min_samples=3):
|
||||
"""
|
||||
初始化GPS聚类器
|
||||
|
||||
参数:
|
||||
eps: DBSCAN的邻域半径参数
|
||||
min_samples: DBSCAN的最小样本数参数
|
||||
"""
|
||||
self.eps = eps
|
||||
self.min_samples = min_samples
|
||||
self.dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
||||
self.scaler = StandardScaler()
|
||||
self.gps_points = gps_points
|
||||
self.logger = logging.getLogger('UAV_Preprocess.GPSCluster')
|
||||
|
||||
def fit(self):
|
||||
"""
|
||||
对GPS点进行聚类,只保留最大的类
|
||||
|
||||
参数:
|
||||
gps_points: 包含'lat'和'lon'列的DataFrame
|
||||
|
||||
返回:
|
||||
带有聚类标签的DataFrame,其中最大类标记为1,其他点标记为-1
|
||||
"""
|
||||
self.logger.info("开始聚类")
|
||||
# 提取经纬度数据
|
||||
X = self.gps_points[["lon", "lat"]].values
|
||||
|
||||
# # 数据标准化
|
||||
# X_scaled = self.scaler.fit_transform(X)
|
||||
|
||||
# 执行DBSCAN聚类
|
||||
labels = self.dbscan.fit_predict(X)
|
||||
|
||||
# 找出最大类的标签(排除噪声点-1)
|
||||
unique_labels = [l for l in set(labels) if l != -1]
|
||||
if unique_labels: # 如果有聚类
|
||||
label_counts = [(l, sum(labels == l)) for l in unique_labels]
|
||||
largest_label = max(label_counts, key=lambda x: x[1])[0]
|
||||
|
||||
# 将最大类标记为1,其他都标记为-1
|
||||
new_labels = (labels == largest_label).astype(int)
|
||||
new_labels[new_labels == 0] = -1
|
||||
else: # 如果没有聚类,全部标记为-1
|
||||
new_labels = labels
|
||||
|
||||
# 将聚类结果添加到原始数据中
|
||||
result_df = self.gps_points.copy()
|
||||
result_df["cluster"] = new_labels
|
||||
|
||||
return result_df
|
||||
|
||||
def get_cluster_stats(self, clustered_points):
|
||||
"""
|
||||
获取聚类统计信息
|
||||
|
||||
参数:
|
||||
clustered_points: 带有聚类标签的DataFrame
|
||||
|
||||
返回:
|
||||
聚类统计信息的字典
|
||||
"""
|
||||
main_cluster = clustered_points[clustered_points["cluster"] == 1]
|
||||
noise_cluster = clustered_points[clustered_points["cluster"] == -1]
|
||||
|
||||
self.logger.info(f"聚类完成:主要类别包含 {len(main_cluster)} 个点,"
|
||||
f"噪声点 {len(noise_cluster)} 个")
|
||||
|
||||
return main_cluster
|
249
main.py
Normal file
249
main.py
Normal file
@ -0,0 +1,249 @@
|
||||
import os
|
||||
import shutil
|
||||
from datetime import timedelta
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Tuple
|
||||
import psutil
|
||||
import pandas as pd
|
||||
from pathlib import Path
|
||||
|
||||
from filter.cluster_filter import GPSCluster
|
||||
from utils.gps_extractor import GPSExtractor
|
||||
from utils.grid_divider import GridDivider
|
||||
from utils.logger import setup_logger
|
||||
from utils.visualizer import FilterVisualizer
|
||||
from utils.docker_runner import DockerRunner
|
||||
from post_pro.conv_obj import ConvertOBJ
|
||||
|
||||
|
||||
@dataclass
|
||||
class ProcessConfig:
|
||||
"""配置类"""
|
||||
|
||||
image_dir: str
|
||||
output_dir: str
|
||||
# 聚类过滤参数
|
||||
cluster_eps: float = 0.01
|
||||
cluster_min_samples: int = 5
|
||||
# 时间组重叠过滤参数
|
||||
time_group_overlap_threshold: float = 0.7
|
||||
time_group_interval: timedelta = timedelta(minutes=5)
|
||||
# 孤立点过滤参数
|
||||
filter_distance_threshold: float = 0.001 # 经纬度距离
|
||||
filter_min_neighbors: int = 6
|
||||
# 密集点过滤参数
|
||||
filter_grid_size: float = 0.001
|
||||
filter_dense_distance_threshold: float = 10 # 普通距离,单位:米
|
||||
filter_time_threshold: timedelta = timedelta(minutes=5)
|
||||
# 网格划分参数
|
||||
grid_overlap: float = 0.05
|
||||
grid_size: float = 500
|
||||
# 几个pipline过程是否开启
|
||||
mode: str = "快拼模式"
|
||||
accuracy: str = "medium"
|
||||
produce_dem: bool = False
|
||||
|
||||
|
||||
class ODM_Plugin:
|
||||
def __init__(self, config: ProcessConfig):
|
||||
self.config = config
|
||||
|
||||
# 检查磁盘空间
|
||||
# TODO 现在输入目录的磁盘空间也需要检查
|
||||
self._check_disk_space()
|
||||
|
||||
# 清理并重建输出目录
|
||||
if os.path.exists(config.output_dir):
|
||||
self._clean_output_dir()
|
||||
self._setup_output_dirs()
|
||||
|
||||
# 修改输入目录,符合ODM要求,从这里开始,image_dir就是project_path
|
||||
self._rename_input_dir()
|
||||
self.project_path = self.config.image_dir
|
||||
|
||||
# 初始化其他组件
|
||||
self.logger = setup_logger(config.output_dir)
|
||||
self.gps_points = None
|
||||
self.grid_points = None
|
||||
self.visualizer = FilterVisualizer(config.output_dir)
|
||||
|
||||
def _clean_output_dir(self):
|
||||
"""清理输出目录"""
|
||||
try:
|
||||
shutil.rmtree(self.config.output_dir)
|
||||
print(f"已清理输出目录: {self.config.output_dir}")
|
||||
except Exception as e:
|
||||
print(f"清理输出目录时发生错误: {str(e)}")
|
||||
raise
|
||||
|
||||
def _setup_output_dirs(self):
|
||||
"""创建必要的输出目录结构"""
|
||||
try:
|
||||
# 创建主输出目录
|
||||
os.makedirs(self.config.output_dir)
|
||||
|
||||
# 创建过滤图像保存目录
|
||||
os.makedirs(os.path.join(self.config.output_dir, 'filter_imgs'))
|
||||
|
||||
# 创建日志目录
|
||||
os.makedirs(os.path.join(self.config.output_dir, 'logs'))
|
||||
|
||||
print(f"已创建输出目录结构: {self.config.output_dir}")
|
||||
except Exception as e:
|
||||
print(f"创建输出目录时发生错误: {str(e)}")
|
||||
raise
|
||||
|
||||
def _get_directory_size(self, path):
|
||||
"""获取目录的总大小(字节)"""
|
||||
total_size = 0
|
||||
for dirpath, dirnames, filenames in os.walk(path):
|
||||
for filename in filenames:
|
||||
file_path = os.path.join(dirpath, filename)
|
||||
try:
|
||||
total_size += os.path.getsize(file_path)
|
||||
except (OSError, FileNotFoundError):
|
||||
continue
|
||||
return total_size
|
||||
|
||||
def _check_disk_space(self):
|
||||
"""检查磁盘空间是否足够"""
|
||||
# 获取输入目录大小
|
||||
input_size = self._get_directory_size(self.config.image_dir)
|
||||
|
||||
# 获取输出目录所在磁盘的剩余空间
|
||||
output_drive = os.path.splitdrive(
|
||||
os.path.abspath(self.config.output_dir))[0]
|
||||
if not output_drive: # 处理Linux/Unix路径
|
||||
output_drive = '/home'
|
||||
|
||||
disk_usage = psutil.disk_usage(output_drive)
|
||||
free_space = disk_usage.free
|
||||
|
||||
# 计算所需空间(输入大小的1.5倍)
|
||||
required_space = input_size * 12
|
||||
|
||||
if free_space < required_space:
|
||||
error_msg = (
|
||||
f"磁盘空间不足!\n"
|
||||
f"输入目录大小: {input_size / (1024**3):.2f} GB\n"
|
||||
f"所需空间: {required_space / (1024**3):.2f} GB\n"
|
||||
f"可用空间: {free_space / (1024**3):.2f} GB\n"
|
||||
f"在驱动器 {output_drive}"
|
||||
)
|
||||
raise RuntimeError(error_msg)
|
||||
|
||||
def _rename_input_dir(self):
|
||||
image_dir = Path(self.config.image_dir).resolve()
|
||||
|
||||
if not image_dir.exists() or not image_dir.is_dir():
|
||||
raise ValueError(
|
||||
f"Provided path '{image_dir}' is not a valid directory.")
|
||||
|
||||
# 原目录名和父路径
|
||||
parent_dir = image_dir.parent
|
||||
original_name = image_dir.name
|
||||
|
||||
# 新的 images 路径(原目录重命名为 images)
|
||||
images_path = parent_dir / "images"
|
||||
|
||||
# 重命名原目录为 images
|
||||
image_dir.rename(images_path)
|
||||
|
||||
# 创建一个新的、和原目录同名的文件夹
|
||||
new_root = parent_dir / original_name
|
||||
new_root.mkdir(exist_ok=False)
|
||||
|
||||
# 创建 project 子文件夹
|
||||
project_dir = new_root / "project"
|
||||
project_dir.mkdir()
|
||||
|
||||
# 把 images 文件夹移动到 project 下
|
||||
final_images_path = project_dir / "images"
|
||||
shutil.move(str(images_path), str(final_images_path))
|
||||
|
||||
print(f"符合标准输入的文件夹结构已经创建好了,{final_images_path}")
|
||||
|
||||
return final_images_path
|
||||
|
||||
def extract_gps(self) -> pd.DataFrame:
|
||||
"""提取GPS数据"""
|
||||
self.logger.info("开始提取GPS数据")
|
||||
extractor = GPSExtractor(self.project_path)
|
||||
self.gps_points = extractor.extract_all_gps()
|
||||
self.logger.info(f"成功提取 {len(self.gps_points)} 个GPS点")
|
||||
|
||||
def cluster(self):
|
||||
"""使用DBSCAN对GPS点进行聚类,只保留最大的类"""
|
||||
previous_points = self.gps_points.copy()
|
||||
clusterer = GPSCluster(
|
||||
self.gps_points,
|
||||
eps=self.config.cluster_eps,
|
||||
min_samples=self.config.cluster_min_samples
|
||||
)
|
||||
|
||||
self.clustered_points = clusterer.fit()
|
||||
self.gps_points = clusterer.get_cluster_stats(self.clustered_points)
|
||||
|
||||
self.visualizer.visualize_filter_step(
|
||||
self.gps_points, previous_points, "1-Clustering")
|
||||
|
||||
def divide_grids(self):
|
||||
"""划分网格
|
||||
Returns:
|
||||
tuple: (grid_points, translations)
|
||||
- grid_points: 网格点数据字典
|
||||
- translations: 网格平移量字典
|
||||
"""
|
||||
grid_divider = GridDivider(
|
||||
overlap=self.config.grid_overlap,
|
||||
grid_size=self.config.grid_size,
|
||||
project_path=self.project_path,
|
||||
output_dir=self.config.output_dir
|
||||
)
|
||||
grids, self.grid_points = grid_divider.adjust_grid_size_and_overlap(
|
||||
self.gps_points
|
||||
)
|
||||
grid_divider.visualize_grids(self.gps_points, grids)
|
||||
grid_divider.save_image_groups(self.grid_points)
|
||||
if len(grids) >= 20:
|
||||
self.logger.warning("网格数量已超过20, 需要人工调整分区")
|
||||
|
||||
def odm_docker_runner(self):
|
||||
""""运行OMD docker容器"""
|
||||
self.logger.info("开始运行Docker容器")
|
||||
# TODO:加一些容错处理
|
||||
docker_runner = DockerRunner(self.project_path)
|
||||
docker_runner.run_odm_container()
|
||||
|
||||
def convert_obj(self):
|
||||
"""转换OBJ模型"""
|
||||
self.logger.info("开始转换OBJ模型")
|
||||
converter = ConvertOBJ(self.config.output_dir)
|
||||
converter.convert_grid_obj(self.grid_points)
|
||||
|
||||
def post_process(self):
|
||||
"""后处理:合并或复制处理结果"""
|
||||
self.logger.info("开始后处理")
|
||||
|
||||
self.logger.info("拷贝正射影像至输出目录")
|
||||
orthophoto_tif_path = os.path.join(
|
||||
self.project_path, "odm_orthophoto", "odm_orthophoto.tif")
|
||||
shutil.copy(orthophoto_tif_path, self.config.output_dir)
|
||||
# if self.config.mode == "三维模式":
|
||||
# self.convert_obj()
|
||||
# else:
|
||||
# pass
|
||||
|
||||
def process(self):
|
||||
"""执行完整的预处理流程"""
|
||||
try:
|
||||
self.extract_gps()
|
||||
self.cluster()
|
||||
self.divide_grids()
|
||||
self.logger.info("==========预处理任务完成==========")
|
||||
self.odm_docker_runner()
|
||||
self.post_process()
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
|
||||
raise
|
253
post_pro/conv_obj.py
Normal file
253
post_pro/conv_obj.py
Normal file
@ -0,0 +1,253 @@
|
||||
import os
|
||||
import subprocess
|
||||
import json
|
||||
import shutil
|
||||
import logging
|
||||
from pyproj import Transformer
|
||||
import cv2
|
||||
|
||||
|
||||
class ConvertOBJ:
|
||||
def __init__(self, output_dir: str):
|
||||
self.output_dir = output_dir
|
||||
# 用于存储所有grid的UTM范围
|
||||
self.ref_east = float('inf')
|
||||
self.ref_north = float('inf')
|
||||
# 初始化UTM到WGS84的转换器
|
||||
self.transformer = Transformer.from_crs(
|
||||
"EPSG:32649", "EPSG:4326", always_xy=True)
|
||||
self.logger = logging.getLogger('UAV_Preprocess.ConvertOBJ')
|
||||
|
||||
def convert_grid_obj(self, grid_points):
|
||||
"""转换每个网格的OBJ文件为OSGB格式"""
|
||||
os.makedirs(os.path.join(self.output_dir,
|
||||
"osgb", "Data"), exist_ok=True)
|
||||
|
||||
# 以第一个grid的UTM坐标作为参照系
|
||||
first_grid_id = list(grid_points.keys())[0]
|
||||
first_grid_dir = os.path.join(
|
||||
self.output_dir,
|
||||
f"grid_{first_grid_id[0]}_{first_grid_id[1]}",
|
||||
"project"
|
||||
)
|
||||
log_file = os.path.join(
|
||||
first_grid_dir, "odm_orthophoto", "odm_orthophoto_log.txt")
|
||||
self.ref_east, self.ref_north = self.read_utm_offset(log_file)
|
||||
|
||||
for grid_id in grid_points.keys():
|
||||
try:
|
||||
self._convert_single_grid(grid_id, grid_points)
|
||||
except Exception as e:
|
||||
self.logger.error(f"网格 {grid_id} 转换失败: {str(e)}")
|
||||
|
||||
self._create_merged_metadata()
|
||||
|
||||
def _convert_single_grid(self, grid_id, grid_points):
|
||||
"""转换单个网格的OBJ文件"""
|
||||
# 构建相关路径
|
||||
grid_name = f"grid_{grid_id[0]}_{grid_id[1]}"
|
||||
project_dir = os.path.join(self.output_dir, grid_name, "project")
|
||||
texturing_dir = os.path.join(project_dir, "odm_texturing")
|
||||
texturing_dst_dir = os.path.join(project_dir, "odm_texturing_dst")
|
||||
opensfm_dir = os.path.join(project_dir, "opensfm")
|
||||
log_file = os.path.join(
|
||||
project_dir, "odm_orthophoto", "odm_orthophoto_log.txt")
|
||||
os.makedirs(texturing_dst_dir, exist_ok=True)
|
||||
|
||||
# 修改obj文件z坐标的值
|
||||
min_25d_z = self.get_min_z_from_obj(os.path.join(
|
||||
project_dir, 'odm_texturing_25d', 'odm_textured_model_geo.obj'))
|
||||
self.modify_z_in_obj(texturing_dir, min_25d_z)
|
||||
|
||||
# 在新文件夹下,利用UTM偏移量,修改obj文件顶点坐标,纹理文件下采样
|
||||
utm_offset = self.read_utm_offset(log_file)
|
||||
modified_obj = self.modify_obj_coordinates(
|
||||
texturing_dir, texturing_dst_dir, utm_offset)
|
||||
self.downsample_texture(texturing_dir, texturing_dst_dir)
|
||||
|
||||
# 执行格式转换,Linux下osgconv有问题,记得注释掉
|
||||
self.logger.info(f"开始转换网格 {grid_id} 的OBJ文件")
|
||||
output_osgb = os.path.join(texturing_dst_dir, "Tile.osgb")
|
||||
cmd = (
|
||||
f"osgconv {modified_obj} {output_osgb} "
|
||||
f"--compressed --smooth --fix-transparency "
|
||||
)
|
||||
self.logger.info(f"执行osgconv命令:{cmd}")
|
||||
|
||||
try:
|
||||
subprocess.run(cmd, shell=True, check=True, cwd=texturing_dir)
|
||||
except subprocess.CalledProcessError as e:
|
||||
raise RuntimeError(f"OSGB转换失败: {str(e)}")
|
||||
|
||||
# 创建OSGB目录结构,复制文件
|
||||
osgb_base_dir = os.path.join(self.output_dir, "osgb")
|
||||
data_dir = os.path.join(osgb_base_dir, "Data")
|
||||
tile_dir = os.path.join(data_dir, f"Tile_{grid_id[0]}_{grid_id[1]}")
|
||||
os.makedirs(tile_dir, exist_ok=True)
|
||||
target_osgb = os.path.join(
|
||||
tile_dir, f"Tile_{grid_id[0]}_{grid_id[1]}.osgb")
|
||||
shutil.copy2(output_osgb, target_osgb)
|
||||
|
||||
def _create_merged_metadata(self):
|
||||
"""创建合并后的metadata.xml文件"""
|
||||
# 转换为WGS84经纬度
|
||||
center_lon, center_lat = self.transformer.transform(
|
||||
self.ref_east, self.ref_north)
|
||||
metadata_content = f"""<?xml version="1.0" encoding="utf-8"?>
|
||||
<ModelMetadata version="1">
|
||||
<SRS>EPSG:4326</SRS>
|
||||
<SRSOrigin>{center_lon},{center_lat},0</SRSOrigin>
|
||||
<Texture>
|
||||
<ColorSource>Visible</ColorSource>
|
||||
</Texture>
|
||||
</ModelMetadata>"""
|
||||
|
||||
metadata_file = os.path.join(self.output_dir, "osgb", "metadata.xml")
|
||||
with open(metadata_file, 'w', encoding='utf-8') as f:
|
||||
f.write(metadata_content)
|
||||
|
||||
def read_utm_offset(self, log_file: str) -> tuple:
|
||||
"""读取UTM偏移量"""
|
||||
try:
|
||||
east_offset = None
|
||||
north_offset = None
|
||||
|
||||
with open(log_file, 'r') as f:
|
||||
lines = f.readlines()
|
||||
for i, line in enumerate(lines):
|
||||
if 'utm_north_offset' in line and i + 1 < len(lines):
|
||||
north_offset = float(lines[i + 1].strip())
|
||||
elif 'utm_east_offset' in line and i + 1 < len(lines):
|
||||
east_offset = float(lines[i + 1].strip())
|
||||
|
||||
if east_offset is None or north_offset is None:
|
||||
raise ValueError("未找到UTM偏移量")
|
||||
|
||||
return east_offset, north_offset
|
||||
except Exception as e:
|
||||
self.logger.error(f"读取UTM偏移量时发生错误: {str(e)}")
|
||||
raise
|
||||
|
||||
def modify_obj_coordinates(self, texturing_dir: str, texturing_dst_dir: str, utm_offset: tuple) -> str:
|
||||
"""修改obj文件中的顶点坐标,使用相对坐标系"""
|
||||
obj_file = os.path.join(
|
||||
texturing_dir, "odm_textured_model_modified.obj")
|
||||
obj_dst_file = os.path.join(
|
||||
texturing_dst_dir, "odm_textured_model_geo_utm.obj")
|
||||
if not os.path.exists(obj_file):
|
||||
raise FileNotFoundError(f"找不到OBJ文件: {obj_file}")
|
||||
shutil.copy2(os.path.join(texturing_dir, "odm_textured_model_geo.mtl"),
|
||||
os.path.join(texturing_dst_dir, "odm_textured_model_geo.mtl"))
|
||||
east_offset, north_offset = utm_offset
|
||||
self.logger.info(
|
||||
f"UTM坐标偏移:{east_offset - self.ref_east}, {north_offset - self.ref_north}")
|
||||
|
||||
try:
|
||||
with open(obj_file, 'r') as f_in, open(obj_dst_file, 'w') as f_out:
|
||||
for line in f_in:
|
||||
if line.startswith('v '):
|
||||
# 处理顶点坐标行
|
||||
parts = line.strip().split()
|
||||
# 使用相对于整体最小UTM坐标的偏移
|
||||
x = float(parts[1]) + (east_offset - self.ref_east)
|
||||
y = float(parts[2]) + (north_offset - self.ref_north)
|
||||
z = float(parts[3])
|
||||
f_out.write(f'v {x:.6f} {z:.6f} {-y:.6f}\n')
|
||||
elif line.startswith('vn '): # 处理法线向量
|
||||
parts = line.split()
|
||||
nx = float(parts[1])
|
||||
ny = float(parts[2])
|
||||
nz = float(parts[3])
|
||||
# 同步反转法线的 Y 轴
|
||||
new_line = f"vn {nx} {nz} {-ny}\n"
|
||||
f_out.write(new_line)
|
||||
else:
|
||||
# 其他行直接写入
|
||||
f_out.write(line)
|
||||
|
||||
return obj_dst_file
|
||||
except Exception as e:
|
||||
self.logger.error(f"修改obj坐标时发生错误: {str(e)}")
|
||||
raise
|
||||
|
||||
def downsample_texture(self, src_dir: str, dst_dir: str):
|
||||
"""复制并重命名纹理文件,对大于100MB的文件进行多次下采样,直到文件小于100MB
|
||||
Args:
|
||||
src_dir: 源纹理目录
|
||||
dst_dir: 目标纹理目录
|
||||
"""
|
||||
for file in os.listdir(src_dir):
|
||||
if file.lower().endswith(('.png')):
|
||||
src_path = os.path.join(src_dir, file)
|
||||
dst_path = os.path.join(dst_dir, file)
|
||||
|
||||
# 检查文件大小(以字节为单位)
|
||||
file_size = os.path.getsize(src_path)
|
||||
if file_size <= 100 * 1024 * 1024: # 如果文件小于等于100MB,直接复制
|
||||
shutil.copy2(src_path, dst_path)
|
||||
else:
|
||||
# 文件大于100MB,进行下采样
|
||||
img = cv2.imread(src_path, cv2.IMREAD_UNCHANGED)
|
||||
if_first_ds = True
|
||||
while file_size > 100 * 1024 * 1024: # 大于100MB
|
||||
self.logger.info(f"纹理文件 {file} 大于100MB,进行下采样")
|
||||
|
||||
if if_first_ds:
|
||||
# 计算新的尺寸(长宽各变为1/4)
|
||||
new_size = (img.shape[1] // 4,
|
||||
img.shape[0] // 4) # 逐步减小尺寸
|
||||
# 使用双三次插值进行下采样
|
||||
resized_img = cv2.resize(
|
||||
img, new_size, interpolation=cv2.INTER_CUBIC)
|
||||
if_first_ds = False
|
||||
else:
|
||||
# 计算新的尺寸(长宽各变为1/2)
|
||||
new_size = (img.shape[1] // 2,
|
||||
img.shape[0] // 2) # 逐步减小尺寸
|
||||
# 使用双三次插值进行下采样
|
||||
resized_img = cv2.resize(
|
||||
img, new_size, interpolation=cv2.INTER_CUBIC)
|
||||
|
||||
# 更新文件路径为下采样后的路径
|
||||
cv2.imwrite(dst_path, resized_img, [
|
||||
cv2.IMWRITE_PNG_COMPRESSION, 9])
|
||||
|
||||
# 更新文件大小和图像
|
||||
file_size = os.path.getsize(dst_path)
|
||||
img = cv2.imread(dst_path, cv2.IMREAD_UNCHANGED)
|
||||
self.logger.info(
|
||||
f"下采样后文件大小: {file_size / (1024 * 1024):.2f} MB")
|
||||
|
||||
def get_min_z_from_obj(self, file_path):
|
||||
min_z = float('inf') # 初始值设为无穷大
|
||||
with open(file_path, 'r') as obj_file:
|
||||
for line in obj_file:
|
||||
# 检查每一行是否是顶点定义(以 'v ' 开头)
|
||||
if line.startswith('v '):
|
||||
# 获取顶点坐标
|
||||
parts = line.split()
|
||||
# 将z值转换为浮动数字
|
||||
z = float(parts[3])
|
||||
# 更新最小z值
|
||||
if z < min_z:
|
||||
min_z = z
|
||||
return min_z
|
||||
|
||||
def modify_z_in_obj(self, texturing_dir, min_25d_z):
|
||||
obj_file = os.path.join(texturing_dir, 'odm_textured_model_geo.obj')
|
||||
output_file = os.path.join(
|
||||
texturing_dir, 'odm_textured_model_modified.obj')
|
||||
with open(obj_file, 'r') as f_in, open(output_file, 'w') as f_out:
|
||||
for line in f_in:
|
||||
if line.startswith('v '): # 顶点坐标行
|
||||
parts = line.strip().split()
|
||||
x = float(parts[1])
|
||||
y = float(parts[2])
|
||||
z = float(parts[3])
|
||||
|
||||
if z < min_25d_z:
|
||||
z = min_25d_z
|
||||
|
||||
f_out.write(f"v {x} {y} {z}\n")
|
||||
else:
|
||||
f_out.write(line)
|
263
post_pro/conv_obj2.py
Normal file
263
post_pro/conv_obj2.py
Normal file
@ -0,0 +1,263 @@
|
||||
import os
|
||||
import subprocess
|
||||
import json
|
||||
import shutil
|
||||
import logging
|
||||
from pyproj import Transformer
|
||||
import cv2
|
||||
|
||||
|
||||
class ConvertOBJ:
|
||||
def __init__(self, output_dir: str):
|
||||
self.output_dir = output_dir
|
||||
# 用于存储所有grid的UTM范围
|
||||
self.ref_east = float('inf')
|
||||
self.ref_north = float('inf')
|
||||
# 初始化UTM到WGS84的转换器
|
||||
self.transformer = Transformer.from_crs(
|
||||
"EPSG:32649", "EPSG:4326", always_xy=True)
|
||||
self.logger = logging.getLogger('UAV_Preprocess.ConvertOBJ')
|
||||
|
||||
def convert_grid_obj(self, grid_points):
|
||||
"""转换每个网格的OBJ文件为OSGB格式"""
|
||||
os.makedirs(os.path.join(self.output_dir,
|
||||
"osgb", "Data"), exist_ok=True)
|
||||
|
||||
# 以第一个grid的UTM坐标作为参照系
|
||||
first_grid_id = list(grid_points.keys())[0]
|
||||
first_grid_dir = os.path.join(
|
||||
self.output_dir,
|
||||
f"grid_{first_grid_id[0]}_{first_grid_id[1]}",
|
||||
"project"
|
||||
)
|
||||
log_file = os.path.join(
|
||||
first_grid_dir, "odm_orthophoto", "odm_orthophoto_log.txt")
|
||||
self.ref_east, self.ref_north = self.read_utm_offset(log_file)
|
||||
|
||||
for grid_id in grid_points.keys():
|
||||
try:
|
||||
self._convert_single_grid(grid_id, grid_points)
|
||||
except Exception as e:
|
||||
self.logger.error(f"网格 {grid_id} 转换失败: {str(e)}")
|
||||
|
||||
self._create_merged_metadata()
|
||||
|
||||
def _convert_single_grid(self, grid_id, grid_points):
|
||||
"""转换单个网格的OBJ文件"""
|
||||
# 构建相关路径
|
||||
grid_name = f"grid_{grid_id[0]}_{grid_id[1]}"
|
||||
project_dir = os.path.join(self.output_dir, grid_name, "project")
|
||||
texturing_dir = os.path.join(project_dir, "odm_texturing")
|
||||
texturing_dst_dir = os.path.join(project_dir, "odm_texturing_dst")
|
||||
split_obj_dir = os.path.join(texturing_dst_dir, "split_obj")
|
||||
opensfm_dir = os.path.join(project_dir, "opensfm")
|
||||
log_file = os.path.join(
|
||||
project_dir, "odm_orthophoto", "odm_orthophoto_log.txt")
|
||||
os.makedirs(texturing_dst_dir, exist_ok=True)
|
||||
|
||||
# 修改obj文件z坐标的值
|
||||
min_25d_z = self.get_min_z_from_obj(os.path.join(
|
||||
project_dir, 'odm_texturing_25d', 'odm_textured_model_geo.obj'))
|
||||
self.modify_z_in_obj(texturing_dir, min_25d_z)
|
||||
|
||||
# 在新文件夹下,利用UTM偏移量,修改obj文件顶点坐标,纹理文件下采样
|
||||
utm_offset = self.read_utm_offset(log_file)
|
||||
modified_obj = self.modify_obj_coordinates(
|
||||
texturing_dir, texturing_dst_dir, utm_offset)
|
||||
self.downsample_texture(texturing_dir, texturing_dst_dir)
|
||||
|
||||
# 将obj文件进行切片
|
||||
self.logger.info(f"开始切片网格 {grid_id} 的OBJ文件")
|
||||
os.makedirs(split_obj_dir)
|
||||
cmd = (
|
||||
f"D:\software\Obj2Tiles\Obj2Tiles.exe --stage Splitting --lods 1 --divisions 3 "
|
||||
f"{modified_obj} {split_obj_dir}"
|
||||
)
|
||||
subprocess.run(cmd, check=True)
|
||||
|
||||
# 执行格式转换,Linux下osgconv有问题,记得注释掉
|
||||
self.logger.info(f"开始转换网格 {grid_id} 的OBJ文件")
|
||||
# 先获取split_obj_dir下的所有obj文件
|
||||
obj_lod_dir = os.path.join(split_obj_dir, "LOD-0")
|
||||
obj_files = [f for f in os.listdir(
|
||||
obj_lod_dir) if f.endswith('.obj')]
|
||||
for obj_file in obj_files:
|
||||
obj_path = os.path.join(obj_lod_dir, obj_file)
|
||||
osgb_file = os.path.splitext(obj_file)[0] + '.osgb'
|
||||
osgb_path = os.path.join(split_obj_dir, osgb_file)
|
||||
# 执行 osgconv 命令
|
||||
subprocess.run(['osgconv', obj_path, osgb_path], check=True)
|
||||
|
||||
# 创建OSGB目录结构,复制文件
|
||||
osgb_base_dir = os.path.join(self.output_dir, "osgb")
|
||||
data_dir = os.path.join(osgb_base_dir, "Data")
|
||||
for obj_file in obj_files:
|
||||
obj_file_name = os.path.splitext(obj_file)[0]
|
||||
tile_dirs = os.path.join(data_dir, f"{obj_file_name}")
|
||||
os.makedirs(tile_dirs, exist_ok=True)
|
||||
shutil.copy2(os.path.join(
|
||||
split_obj_dir, obj_file_name+".osgb"), tile_dirs)
|
||||
|
||||
def _create_merged_metadata(self):
|
||||
"""创建合并后的metadata.xml文件"""
|
||||
# 转换为WGS84经纬度
|
||||
center_lon, center_lat = self.transformer.transform(
|
||||
self.ref_east, self.ref_north)
|
||||
metadata_content = f"""<?xml version="1.0" encoding="utf-8"?>
|
||||
<ModelMetadata version="1">
|
||||
<SRS>EPSG:4326</SRS>
|
||||
<SRSOrigin>{center_lon},{center_lat},0</SRSOrigin>
|
||||
<Texture>
|
||||
<ColorSource>Visible</ColorSource>
|
||||
</Texture>
|
||||
</ModelMetadata>"""
|
||||
|
||||
metadata_file = os.path.join(self.output_dir, "osgb", "metadata.xml")
|
||||
with open(metadata_file, 'w', encoding='utf-8') as f:
|
||||
f.write(metadata_content)
|
||||
|
||||
def read_utm_offset(self, log_file: str) -> tuple:
|
||||
"""读取UTM偏移量"""
|
||||
try:
|
||||
east_offset = None
|
||||
north_offset = None
|
||||
|
||||
with open(log_file, 'r') as f:
|
||||
lines = f.readlines()
|
||||
for i, line in enumerate(lines):
|
||||
if 'utm_north_offset' in line and i + 1 < len(lines):
|
||||
north_offset = float(lines[i + 1].strip())
|
||||
elif 'utm_east_offset' in line and i + 1 < len(lines):
|
||||
east_offset = float(lines[i + 1].strip())
|
||||
|
||||
if east_offset is None or north_offset is None:
|
||||
raise ValueError("未找到UTM偏移量")
|
||||
|
||||
return east_offset, north_offset
|
||||
except Exception as e:
|
||||
self.logger.error(f"读取UTM偏移量时发生错误: {str(e)}")
|
||||
raise
|
||||
|
||||
def modify_obj_coordinates(self, texturing_dir: str, texturing_dst_dir: str, utm_offset: tuple) -> str:
|
||||
"""修改obj文件中的顶点坐标,使用相对坐标系"""
|
||||
obj_file = os.path.join(
|
||||
texturing_dir, "odm_textured_model_modified.obj")
|
||||
obj_dst_file = os.path.join(
|
||||
texturing_dst_dir, "odm_textured_model_geo_utm.obj")
|
||||
if not os.path.exists(obj_file):
|
||||
raise FileNotFoundError(f"找不到OBJ文件: {obj_file}")
|
||||
shutil.copy2(os.path.join(texturing_dir, "odm_textured_model_geo.mtl"),
|
||||
os.path.join(texturing_dst_dir, "odm_textured_model_geo.mtl"))
|
||||
east_offset, north_offset = utm_offset
|
||||
self.logger.info(
|
||||
f"UTM坐标偏移:{east_offset - self.ref_east}, {north_offset - self.ref_north}")
|
||||
|
||||
try:
|
||||
with open(obj_file, 'r') as f_in, open(obj_dst_file, 'w') as f_out:
|
||||
for line in f_in:
|
||||
if line.startswith('v '):
|
||||
# 处理顶点坐标行
|
||||
parts = line.strip().split()
|
||||
# 使用相对于整体最小UTM坐标的偏移
|
||||
x = float(parts[1]) + (east_offset - self.ref_east)
|
||||
y = float(parts[2]) + (north_offset - self.ref_north)
|
||||
z = float(parts[3])
|
||||
f_out.write(f'v {x:.6f} {z:.6f} {-y:.6f}\n')
|
||||
elif line.startswith('vn '): # 处理法线向量
|
||||
parts = line.split()
|
||||
nx = float(parts[1])
|
||||
ny = float(parts[2])
|
||||
nz = float(parts[3])
|
||||
# 同步反转法线的 Y 轴
|
||||
new_line = f"vn {nx} {nz} {-ny}\n"
|
||||
f_out.write(new_line)
|
||||
else:
|
||||
# 其他行直接写入
|
||||
f_out.write(line)
|
||||
|
||||
return obj_dst_file
|
||||
except Exception as e:
|
||||
self.logger.error(f"修改obj坐标时发生错误: {str(e)}")
|
||||
raise
|
||||
|
||||
def downsample_texture(self, src_dir: str, dst_dir: str):
|
||||
"""复制并重命名纹理文件,对大于100MB的文件进行多次下采样,直到文件小于100MB
|
||||
Args:
|
||||
src_dir: 源纹理目录
|
||||
dst_dir: 目标纹理目录
|
||||
"""
|
||||
for file in os.listdir(src_dir):
|
||||
if file.lower().endswith(('.png')):
|
||||
src_path = os.path.join(src_dir, file)
|
||||
dst_path = os.path.join(dst_dir, file)
|
||||
|
||||
# 检查文件大小(以字节为单位)
|
||||
file_size = os.path.getsize(src_path)
|
||||
if file_size <= 100 * 1024 * 1024: # 如果文件小于等于100MB,直接复制
|
||||
shutil.copy2(src_path, dst_path)
|
||||
else:
|
||||
# 文件大于100MB,进行下采样
|
||||
img = cv2.imread(src_path, cv2.IMREAD_UNCHANGED)
|
||||
if_first_ds = True
|
||||
while file_size > 100 * 1024 * 1024: # 大于100MB
|
||||
self.logger.info(f"纹理文件 {file} 大于100MB,进行下采样")
|
||||
|
||||
if if_first_ds:
|
||||
# 计算新的尺寸(长宽各变为1/4)
|
||||
new_size = (img.shape[1] // 4,
|
||||
img.shape[0] // 4) # 逐步减小尺寸
|
||||
# 使用双三次插值进行下采样
|
||||
resized_img = cv2.resize(
|
||||
img, new_size, interpolation=cv2.INTER_CUBIC)
|
||||
if_first_ds = False
|
||||
else:
|
||||
# 计算新的尺寸(长宽各变为1/2)
|
||||
new_size = (img.shape[1] // 2,
|
||||
img.shape[0] // 2) # 逐步减小尺寸
|
||||
# 使用双三次插值进行下采样
|
||||
resized_img = cv2.resize(
|
||||
img, new_size, interpolation=cv2.INTER_CUBIC)
|
||||
|
||||
# 更新文件路径为下采样后的路径
|
||||
cv2.imwrite(dst_path, resized_img, [
|
||||
cv2.IMWRITE_PNG_COMPRESSION, 9])
|
||||
|
||||
# 更新文件大小和图像
|
||||
file_size = os.path.getsize(dst_path)
|
||||
img = cv2.imread(dst_path, cv2.IMREAD_UNCHANGED)
|
||||
self.logger.info(
|
||||
f"下采样后文件大小: {file_size / (1024 * 1024):.2f} MB")
|
||||
|
||||
def get_min_z_from_obj(self, file_path):
|
||||
min_z = float('inf') # 初始值设为无穷大
|
||||
with open(file_path, 'r') as obj_file:
|
||||
for line in obj_file:
|
||||
# 检查每一行是否是顶点定义(以 'v ' 开头)
|
||||
if line.startswith('v '):
|
||||
# 获取顶点坐标
|
||||
parts = line.split()
|
||||
# 将z值转换为浮动数字
|
||||
z = float(parts[3])
|
||||
# 更新最小z值
|
||||
if z < min_z:
|
||||
min_z = z
|
||||
return min_z
|
||||
|
||||
def modify_z_in_obj(self, texturing_dir, min_25d_z):
|
||||
obj_file = os.path.join(texturing_dir, 'odm_textured_model_geo.obj')
|
||||
output_file = os.path.join(
|
||||
texturing_dir, 'odm_textured_model_modified.obj')
|
||||
with open(obj_file, 'r') as f_in, open(output_file, 'w') as f_out:
|
||||
for line in f_in:
|
||||
if line.startswith('v '): # 顶点坐标行
|
||||
parts = line.strip().split()
|
||||
x = float(parts[1])
|
||||
y = float(parts[2])
|
||||
z = float(parts[3])
|
||||
|
||||
if z < min_25d_z:
|
||||
z = min_25d_z
|
||||
|
||||
f_out.write(f"v {x} {y} {z}\n")
|
||||
else:
|
||||
f_out.write(line)
|
59
run.py
Normal file
59
run.py
Normal file
@ -0,0 +1,59 @@
|
||||
import argparse
|
||||
from datetime import timedelta
|
||||
from main import ProcessConfig, ODM_Plugin
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='ODM预处理工具')
|
||||
|
||||
# 必需参数
|
||||
# parser.add_argument('--image_dir', required=True, help='输入图片目录路径')
|
||||
# parser.add_argument('--output_dir', required=True, help='输出目录路径')
|
||||
parser.add_argument(
|
||||
'--image_dir', default=r'E:\datasets\UAV\199', help='输入图片目录路径')
|
||||
parser.add_argument(
|
||||
'--output_dir', default=r'G:\ODM_output\test2', help='输出目录路径')
|
||||
# 可选参数
|
||||
parser.add_argument('--mode', default='三维模式',
|
||||
choices=['快拼模式', '三维模式'], help='处理模式')
|
||||
parser.add_argument('--accuracy', default='medium',
|
||||
choices=['high', 'medium', 'low'], help='精度')
|
||||
parser.add_argument('--grid_size', type=float, default=800, help='网格大小(米)')
|
||||
parser.add_argument('--grid_overlap', type=float,
|
||||
default=0.05, help='网格重叠率')
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
# 创建配置
|
||||
config = ProcessConfig(
|
||||
image_dir=args.image_dir,
|
||||
output_dir=args.output_dir,
|
||||
mode=args.mode,
|
||||
accuracy=args.accuracy,
|
||||
grid_size=args.grid_size,
|
||||
grid_overlap=args.grid_overlap,
|
||||
|
||||
# 其他参数使用默认值
|
||||
cluster_eps=0.01,
|
||||
cluster_min_samples=5,
|
||||
time_group_overlap_threshold=0.7,
|
||||
time_group_interval=timedelta(minutes=5),
|
||||
filter_distance_threshold=0.001,
|
||||
filter_min_neighbors=6,
|
||||
filter_grid_size=0.001,
|
||||
filter_dense_distance_threshold=10,
|
||||
filter_time_threshold=timedelta(minutes=5),
|
||||
)
|
||||
|
||||
# 创建处理器并执行
|
||||
processor = ODM_Plugin(config)
|
||||
processor.process()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
89
utils/docker_runner.py
Normal file
89
utils/docker_runner.py
Normal file
@ -0,0 +1,89 @@
|
||||
import docker
|
||||
import os
|
||||
import logging
|
||||
from collections import deque
|
||||
|
||||
|
||||
class DockerRunner:
|
||||
def __init__(self, project_path: str):
|
||||
"""
|
||||
初始化 DockerRunner
|
||||
|
||||
Args:
|
||||
project_path (str): 项目路径,将挂载到 Docker 容器中
|
||||
"""
|
||||
self.project_path = project_path
|
||||
self.logger = logging.getLogger("DockerRunner")
|
||||
self.docker_client = docker.from_env()
|
||||
|
||||
def run_odm_container(self):
|
||||
"""
|
||||
使用 Docker SDK 运行 OpenDroneMap 容器
|
||||
"""
|
||||
try:
|
||||
self.logger.info("开始运行docker run指令")
|
||||
# 挂载路径
|
||||
volume_mapping = {
|
||||
self.project_path: {
|
||||
'bind': '/datasets',
|
||||
'mode': 'rw'
|
||||
}
|
||||
}
|
||||
|
||||
# Docker 命令参数
|
||||
command = [
|
||||
"--project-path", "/datasets",
|
||||
"project",
|
||||
"--max-concurrency", "15",
|
||||
"--force-gps",
|
||||
"--split-overlap", "0",
|
||||
]
|
||||
|
||||
# 运行容器
|
||||
container = self.docker_client.containers.run(
|
||||
image="opendronemap/odm:gpu",
|
||||
command=command,
|
||||
volumes=volume_mapping,
|
||||
device_requests=[
|
||||
docker.types.DeviceRequest(
|
||||
count=-1, capabilities=[["gpu"]])
|
||||
], # 添加 GPU 支持
|
||||
remove=False, # 容器运行结束后不自动删除,便于获取日志
|
||||
tty=True,
|
||||
detach=True # 后台运行
|
||||
)
|
||||
|
||||
# 等待容器运行完成
|
||||
exit_status = container.wait()
|
||||
if exit_status["StatusCode"] != 0:
|
||||
self.logger.error(f"容器运行失败,退出状态码: {exit_status['StatusCode']}")
|
||||
|
||||
# 获取容器的错误日志
|
||||
error_logs = container.logs(
|
||||
stderr=True).decode("utf-8").splitlines()
|
||||
self.logger.error("容器运行失败的详细错误日志:")
|
||||
for line in error_logs:
|
||||
self.logger.error(line)
|
||||
|
||||
else:
|
||||
# 获取所有日志
|
||||
logs = container.logs().decode("utf-8").splitlines()
|
||||
|
||||
# 输出最后 50 行日志
|
||||
self.logger.info("容器运行完成,以下是最后 50 行日志:")
|
||||
for line in logs[-50:]:
|
||||
self.logger.info(line)
|
||||
|
||||
# 删除容器
|
||||
container.remove()
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"运行 Docker 容器时发生错误: {str(e)}", exc_info=True)
|
||||
raise
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 示例用法
|
||||
project_path = r"E:\datasets\UAV\199"
|
||||
docker_runner = DockerRunner(project_path)
|
||||
docker_runner.run_odm_container()
|
96
utils/gps_extractor.py
Normal file
96
utils/gps_extractor.py
Normal file
@ -0,0 +1,96 @@
|
||||
import os
|
||||
from PIL import Image
|
||||
import piexif
|
||||
import logging
|
||||
import pandas as pd
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
class GPSExtractor:
|
||||
"""从图像文件提取GPS坐标和拍摄日期"""
|
||||
|
||||
def __init__(self, project_path):
|
||||
self.image_dir = os.path.join(project_path, 'project', 'images')
|
||||
self.logger = logging.getLogger('UAV_Preprocess.GPSExtractor')
|
||||
|
||||
@staticmethod
|
||||
def _dms_to_decimal(dms):
|
||||
"""将DMS格式转换为十进制度"""
|
||||
return dms[0][0] / dms[0][1] + (dms[1][0] / dms[1][1]) / 60 + (dms[2][0] / dms[2][1]) / 3600
|
||||
|
||||
@staticmethod
|
||||
def _parse_datetime(datetime_str):
|
||||
"""解析EXIF中的日期时间字符串"""
|
||||
try:
|
||||
# EXIF日期格式通常为 'YYYY:MM:DD HH:MM:SS'
|
||||
return datetime.strptime(datetime_str.decode(), '%Y:%m:%d %H:%M:%S')
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
def get_gps_and_date(self, image_path):
|
||||
"""提取单张图片的GPS坐标和拍摄日期"""
|
||||
try:
|
||||
image = Image.open(image_path)
|
||||
exif_data = piexif.load(image.info['exif'])
|
||||
|
||||
# 提取GPS信息
|
||||
gps_info = exif_data.get("GPS", {})
|
||||
lat = lon = None
|
||||
if gps_info:
|
||||
lat = self._dms_to_decimal(gps_info.get(2, []))
|
||||
lon = self._dms_to_decimal(gps_info.get(4, []))
|
||||
self.logger.debug(
|
||||
f"成功提取图片GPS坐标: {image_path} - 纬度: {lat}, 经度: {lon}")
|
||||
|
||||
# 提取拍摄日期
|
||||
date_info = None
|
||||
if "Exif" in exif_data:
|
||||
# 优先使用DateTimeOriginal
|
||||
date_str = exif_data["Exif"].get(36867) # DateTimeOriginal
|
||||
if not date_str:
|
||||
# 备选DateTime
|
||||
date_str = exif_data["Exif"].get(
|
||||
36868) # DateTimeDigitized
|
||||
if not date_str:
|
||||
# 最后使用基本DateTime
|
||||
date_str = exif_data["0th"].get(306) # DateTime
|
||||
|
||||
if date_str:
|
||||
date_info = self._parse_datetime(date_str)
|
||||
self.logger.debug(
|
||||
f"成功提取图片拍摄日期: {image_path} - {date_info}")
|
||||
|
||||
if not gps_info:
|
||||
self.logger.warning(f"图片无GPS信息: {image_path}")
|
||||
if not date_info:
|
||||
self.logger.warning(f"图片无拍摄日期信息: {image_path}")
|
||||
|
||||
return lat, lon, date_info
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"提取图片信息时发生错误: {image_path} - {str(e)}")
|
||||
return None, None, None
|
||||
|
||||
def extract_all_gps(self):
|
||||
"""提取所有图片的GPS坐标和拍摄日期"""
|
||||
self.logger.info(f"开始从目录提取GPS坐标和拍摄日期: {self.image_dir}")
|
||||
gps_data = []
|
||||
total_images = 0
|
||||
successful_extractions = 0
|
||||
|
||||
for image_file in os.listdir(self.image_dir):
|
||||
total_images += 1
|
||||
image_path = os.path.join(self.image_dir, image_file)
|
||||
lat, lon, date = self.get_gps_and_date(image_path)
|
||||
if lat and lon: # 仍然以GPS信息作为主要判断依据
|
||||
successful_extractions += 1
|
||||
gps_data.append({
|
||||
'file': image_file,
|
||||
'lat': lat,
|
||||
'lon': lon,
|
||||
'date': date
|
||||
})
|
||||
|
||||
self.logger.info(
|
||||
f"GPS坐标和拍摄日期提取完成 - 总图片数: {total_images}, 成功提取: {successful_extractions}, 失败: {total_images - successful_extractions}")
|
||||
return pd.DataFrame(gps_data)
|
249
utils/grid_divider.py
Normal file
249
utils/grid_divider.py
Normal file
@ -0,0 +1,249 @@
|
||||
import logging
|
||||
from geopy.distance import geodesic
|
||||
import matplotlib.pyplot as plt
|
||||
import os
|
||||
|
||||
|
||||
class GridDivider:
|
||||
"""划分网格,并将图片分配到对应网格"""
|
||||
|
||||
def __init__(self, overlap, grid_size, project_path, output_dir):
|
||||
self.overlap = overlap
|
||||
self.grid_size = grid_size
|
||||
self.project_path = project_path
|
||||
self.output_dir = output_dir
|
||||
self.logger = logging.getLogger('UAV_Preprocess.GridDivider')
|
||||
self.logger.info(f"初始化网格划分器,重叠率: {overlap}")
|
||||
self.num_grids_width = 0 # 添加网格数量属性
|
||||
self.num_grids_height = 0
|
||||
|
||||
def adjust_grid_size_and_overlap(self, points_df):
|
||||
"""动态调整网格重叠率"""
|
||||
grids = self.adjust_grid_size(points_df)
|
||||
self.logger.info(f"开始动态调整网格重叠率,初始重叠率: {self.overlap}")
|
||||
while True:
|
||||
# 使用调整好的网格大小划分网格
|
||||
grids = self.divide_grids(points_df)
|
||||
grid_points, multiple_grid_points = self.assign_to_grids(
|
||||
points_df, grids)
|
||||
|
||||
if len(grids) == 1:
|
||||
self.logger.info(f"网格数量为1,跳过重叠率调整")
|
||||
break
|
||||
elif multiple_grid_points < 0.1*len(points_df):
|
||||
self.overlap += 0.02
|
||||
self.logger.info(f"重叠率增加到: {self.overlap}")
|
||||
else:
|
||||
self.logger.info(
|
||||
f"找到合适的重叠率: {self.overlap}, 有{multiple_grid_points}个点被分配到多个网格")
|
||||
break
|
||||
return grids, grid_points
|
||||
|
||||
def adjust_grid_size(self, points_df):
|
||||
"""动态调整网格大小
|
||||
|
||||
Args:
|
||||
points_df: 包含GPS点的DataFrame
|
||||
|
||||
Returns:
|
||||
tuple: (grids, translations, grid_points, final_grid_size)
|
||||
"""
|
||||
self.logger.info(f"开始动态调整网格大小,初始大小: {self.grid_size}米")
|
||||
|
||||
while True:
|
||||
# 使用当前grid_size划分网格
|
||||
grids = self.divide_grids(points_df)
|
||||
grid_points, multiple_grid_points = self.assign_to_grids(
|
||||
points_df, grids)
|
||||
|
||||
# 检查每个网格中的点数
|
||||
max_points = 0
|
||||
for grid_id, points in grid_points.items():
|
||||
max_points = max(max_points, len(points))
|
||||
|
||||
self.logger.info(
|
||||
f"当前网格大小: {self.grid_size}米, 单个网格最大点数: {max_points}")
|
||||
|
||||
# 如果最大点数超过1600,减小网格大小
|
||||
if max_points > 1600:
|
||||
self.grid_size -= 100
|
||||
self.logger.info(f"点数超过1500,减小网格大小至: {self.grid_size}米")
|
||||
if self.grid_size < 500: # 设置一个最小网格大小限制
|
||||
self.logger.warning("网格大小已达到最小值500米,停止调整")
|
||||
break
|
||||
else:
|
||||
self.logger.info(f"找到合适的网格大小: {self.grid_size}米")
|
||||
break
|
||||
return grids
|
||||
|
||||
def divide_grids(self, points_df):
|
||||
"""计算边界框并划分网格
|
||||
Returns:
|
||||
tuple: (grids, translations)
|
||||
- grids: 网格边界列表
|
||||
- translations: 网格平移量字典
|
||||
"""
|
||||
self.logger.info("开始划分网格")
|
||||
|
||||
min_lat, max_lat = points_df['lat'].min(), points_df['lat'].max()
|
||||
min_lon, max_lon = points_df['lon'].min(), points_df['lon'].max()
|
||||
|
||||
# 计算区域的实际距离(米)
|
||||
width = geodesic((min_lat, min_lon), (min_lat, max_lon)).meters
|
||||
height = geodesic((min_lat, min_lon), (max_lat, min_lon)).meters
|
||||
|
||||
self.logger.info(f"区域宽度: {width:.2f}米, 高度: {height:.2f}米")
|
||||
|
||||
# 精细调整网格的长宽,避免出现2*grid_size-1的情况的影响
|
||||
grid_size_lt = [self.grid_size - 200, self.grid_size - 100,
|
||||
self.grid_size, self.grid_size + 100, self.grid_size + 200]
|
||||
|
||||
width_modulus_lt = [width % grid_size for grid_size in grid_size_lt]
|
||||
grid_width = grid_size_lt[width_modulus_lt.index(
|
||||
min(width_modulus_lt))]
|
||||
height_modulus_lt = [height % grid_size for grid_size in grid_size_lt]
|
||||
grid_height = grid_size_lt[height_modulus_lt.index(
|
||||
min(height_modulus_lt))]
|
||||
self.logger.info(f"网格宽度: {grid_width:.2f}米, 网格高度: {grid_height:.2f}米")
|
||||
|
||||
# 计算需要划分的网格数量
|
||||
self.num_grids_width = max(int(width / grid_width), 1)
|
||||
self.num_grids_height = max(int(height / grid_height), 1)
|
||||
|
||||
# 计算每个网格对应的经纬度步长
|
||||
lat_step = (max_lat - min_lat) / self.num_grids_height
|
||||
lon_step = (max_lon - min_lon) / self.num_grids_width
|
||||
|
||||
grids = []
|
||||
|
||||
# 先创建所有网格
|
||||
for i in range(self.num_grids_height):
|
||||
for j in range(self.num_grids_width):
|
||||
grid_min_lat = min_lat + i * lat_step - self.overlap * lat_step
|
||||
grid_max_lat = min_lat + \
|
||||
(i + 1) * lat_step + self.overlap * lat_step
|
||||
grid_min_lon = min_lon + j * lon_step - self.overlap * lon_step
|
||||
grid_max_lon = min_lon + \
|
||||
(j + 1) * lon_step + self.overlap * lon_step
|
||||
|
||||
grid_bounds = (grid_min_lat, grid_max_lat,
|
||||
grid_min_lon, grid_max_lon)
|
||||
grids.append(grid_bounds)
|
||||
|
||||
self.logger.debug(
|
||||
f"网格[{i},{j}]: 纬度[{grid_min_lat:.6f}, {grid_max_lat:.6f}], "
|
||||
f"经度[{grid_min_lon:.6f}, {grid_max_lon:.6f}]"
|
||||
)
|
||||
|
||||
self.logger.info(
|
||||
f"成功划分为 {len(grids)} 个网格 ({self.num_grids_width}x{self.num_grids_height})")
|
||||
|
||||
return grids
|
||||
|
||||
def assign_to_grids(self, points_df, grids):
|
||||
"""将点分配到对应网格"""
|
||||
self.logger.info(f"开始将 {len(points_df)} 个点分配到网格中")
|
||||
|
||||
grid_points = {} # 使用字典存储每个网格的点
|
||||
points_assigned = 0
|
||||
multiple_grid_points = 0
|
||||
|
||||
for i in range(self.num_grids_height):
|
||||
for j in range(self.num_grids_width):
|
||||
grid_points[(i, j)] = [] # 使用(i,j)元组
|
||||
|
||||
for _, point in points_df.iterrows():
|
||||
point_assigned = False
|
||||
for i in range(self.num_grids_height):
|
||||
for j in range(self.num_grids_width):
|
||||
grid_idx = i * self.num_grids_width + j
|
||||
min_lat, max_lat, min_lon, max_lon = grids[grid_idx]
|
||||
|
||||
if min_lat <= point['lat'] <= max_lat and min_lon <= point['lon'] <= max_lon:
|
||||
grid_points[(i, j)].append(point.to_dict())
|
||||
if point_assigned:
|
||||
multiple_grid_points += 1
|
||||
else:
|
||||
points_assigned += 1
|
||||
point_assigned = True
|
||||
|
||||
# 记录每个网格的点数
|
||||
for grid_id, points in grid_points.items():
|
||||
self.logger.info(f"网格 {grid_id} 包含 {len(points)} 个点")
|
||||
|
||||
self.logger.info(
|
||||
f"点分配完成: 总点数 {len(points_df)}, "
|
||||
f"成功分配 {points_assigned} 个点, "
|
||||
f"{multiple_grid_points} 个点被分配到多个网格"
|
||||
)
|
||||
|
||||
return grid_points, multiple_grid_points
|
||||
|
||||
def visualize_grids(self, points_df, grids):
|
||||
"""可视化网格划分和GPS点的分布"""
|
||||
self.logger.info("开始可视化网格划分")
|
||||
|
||||
plt.figure(figsize=(12, 8))
|
||||
|
||||
# 绘制GPS点
|
||||
plt.scatter(points_df['lon'], points_df['lat'],
|
||||
c='blue', s=10, alpha=0.6, label='GPS points')
|
||||
|
||||
# 绘制网格
|
||||
for i in range(self.num_grids_height):
|
||||
for j in range(self.num_grids_width):
|
||||
grid_idx = i * self.num_grids_width + j
|
||||
min_lat, max_lat, min_lon, max_lon = grids[grid_idx]
|
||||
|
||||
# 计算网格的实际长度和宽度(米)
|
||||
width = geodesic((min_lat, min_lon), (min_lat, max_lon)).meters
|
||||
height = geodesic((min_lat, min_lon),
|
||||
(max_lat, min_lon)).meters
|
||||
|
||||
plt.plot([min_lon, max_lon, max_lon, min_lon, min_lon],
|
||||
[min_lat, min_lat, max_lat, max_lat, min_lat],
|
||||
'r-', alpha=0.5)
|
||||
# 在网格中心添加网格编号和尺寸信息
|
||||
center_lon = (min_lon + max_lon) / 2
|
||||
center_lat = (min_lat + max_lat) / 2
|
||||
plt.text(center_lon, center_lat,
|
||||
f"({i},{j})\n{width:.0f}m×{height:.0f}m", # 显示(i,j)和尺寸
|
||||
horizontalalignment='center',
|
||||
verticalalignment='center',
|
||||
fontsize=8)
|
||||
|
||||
plt.title('Grid Division and GPS Point Distribution')
|
||||
plt.xlabel('Longitude')
|
||||
plt.ylabel('Latitude')
|
||||
plt.legend()
|
||||
plt.grid(True)
|
||||
|
||||
# 如果提供了输出目录,保存图像
|
||||
if self.output_dir:
|
||||
save_path = os.path.join(
|
||||
self.output_dir, 'filter_imgs', 'grid_division.png')
|
||||
plt.savefig(save_path, dpi=300, bbox_inches='tight')
|
||||
self.logger.info(f"网格划分可视化图已保存至: {save_path}")
|
||||
|
||||
plt.close()
|
||||
|
||||
def save_image_groups(self, grid_points, output_file_name="image_groups.txt"):
|
||||
"""保存图像分组信息到文件
|
||||
|
||||
Args:
|
||||
grid_points (dict): 每个网格的点信息,键为(i, j),值为点的列表
|
||||
output_file (str): 输出文件路径
|
||||
"""
|
||||
self.logger.info(f"开始保存图像分组信息到 {output_file_name}")
|
||||
|
||||
output_file = os.path.join(
|
||||
self.project_path, 'project', output_file_name)
|
||||
with open(output_file, 'w') as f:
|
||||
for (i, j), points in grid_points.items():
|
||||
# 计算组编号(按行展开的顺序)
|
||||
group_id = i * self.num_grids_width + j + 1
|
||||
for point in points:
|
||||
image_name = point.get('file', 'unknown')
|
||||
f.write(f"{image_name} {group_id}\n")
|
||||
|
||||
self.logger.info(f"图像分组信息已保存到 {output_file}")
|
36
utils/logger.py
Normal file
36
utils/logger.py
Normal file
@ -0,0 +1,36 @@
|
||||
import logging
|
||||
import os
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
def setup_logger(output_dir):
|
||||
# 创建logs目录
|
||||
log_dir = os.path.join(output_dir, 'logs')
|
||||
|
||||
# 创建日志文件名(包含时间戳)
|
||||
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
||||
log_file = os.path.join(log_dir, f'preprocess_{timestamp}.log')
|
||||
|
||||
# 配置日志格式
|
||||
formatter = logging.Formatter(
|
||||
'%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
||||
datefmt='%Y-%m-%d %H:%M:%S'
|
||||
)
|
||||
|
||||
# 配置文件处理器
|
||||
file_handler = logging.FileHandler(log_file, encoding='utf-8')
|
||||
file_handler.setFormatter(formatter)
|
||||
|
||||
# 配置控制台处理器
|
||||
console_handler = logging.StreamHandler()
|
||||
console_handler.setFormatter(formatter)
|
||||
|
||||
# 获取根日志记录器
|
||||
logger = logging.getLogger('UAV_Preprocess')
|
||||
logger.setLevel(logging.INFO)
|
||||
|
||||
# 添加处理器
|
||||
logger.addHandler(file_handler)
|
||||
logger.addHandler(console_handler)
|
||||
|
||||
return logger
|
152
utils/visualizer.py
Normal file
152
utils/visualizer.py
Normal file
@ -0,0 +1,152 @@
|
||||
import os
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import logging
|
||||
from typing import Optional
|
||||
from pyproj import Transformer
|
||||
|
||||
|
||||
class FilterVisualizer:
|
||||
"""过滤结果可视化器"""
|
||||
|
||||
def __init__(self, output_dir: str):
|
||||
"""
|
||||
初始化可视化器
|
||||
|
||||
Args:
|
||||
output_dir: 输出目录路径
|
||||
"""
|
||||
self.output_dir = output_dir
|
||||
self.logger = logging.getLogger('UAV_Preprocess.Visualizer')
|
||||
# 创建坐标转换器
|
||||
self.transformer = Transformer.from_crs(
|
||||
"EPSG:4326", # WGS84经纬度坐标系
|
||||
"EPSG:32649", # UTM49N
|
||||
always_xy=True
|
||||
)
|
||||
|
||||
def _convert_to_utm(self, lon: pd.Series, lat: pd.Series) -> tuple:
|
||||
"""
|
||||
将经纬度坐标转换为UTM坐标
|
||||
|
||||
Args:
|
||||
lon: 经度序列
|
||||
lat: 纬度序列
|
||||
|
||||
Returns:
|
||||
tuple: (x坐标, y坐标)
|
||||
"""
|
||||
return self.transformer.transform(lon, lat)
|
||||
|
||||
def visualize_filter_step(self,
|
||||
current_points: pd.DataFrame,
|
||||
previous_points: pd.DataFrame,
|
||||
step_name: str,
|
||||
save_name: Optional[str] = None):
|
||||
"""
|
||||
可视化单个过滤步骤的结果
|
||||
|
||||
Args:
|
||||
current_points: 当前步骤后的点
|
||||
previous_points: 上一步骤的点
|
||||
step_name: 步骤名称
|
||||
save_name: 保存文件名,默认为step_name
|
||||
"""
|
||||
self.logger.info(f"开始生成{step_name}的可视化结果")
|
||||
|
||||
# 找出被过滤掉的点
|
||||
filtered_files = set(
|
||||
previous_points['file']) - set(current_points['file'])
|
||||
filtered_points = previous_points[previous_points['file'].isin(
|
||||
filtered_files)]
|
||||
|
||||
# 转换坐标到UTM
|
||||
current_x, current_y = self._convert_to_utm(
|
||||
current_points['lon'], current_points['lat'])
|
||||
filtered_x, filtered_y = self._convert_to_utm(
|
||||
filtered_points['lon'], filtered_points['lat'])
|
||||
|
||||
# 创建图形
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei'] # 黑体
|
||||
plt.rcParams['axes.unicode_minus'] = False
|
||||
plt.figure(figsize=(20, 16))
|
||||
|
||||
# 绘制保留的点
|
||||
plt.scatter(current_x, current_y,
|
||||
color='blue', label='保留的点',
|
||||
alpha=0.6, s=50)
|
||||
|
||||
# 绘制被过滤的点
|
||||
if not filtered_points.empty:
|
||||
plt.scatter(filtered_x, filtered_y,
|
||||
color='red', marker='x', label='过滤的点',
|
||||
alpha=0.6, s=100)
|
||||
|
||||
# 设置图形属性
|
||||
plt.title(f"{step_name}后的GPS点\n"
|
||||
f"(过滤: {len(filtered_points)}, 保留: {len(current_points)})",
|
||||
fontsize=14)
|
||||
plt.xlabel("东向坐标 (米)", fontsize=12)
|
||||
plt.ylabel("北向坐标 (米)", fontsize=12)
|
||||
plt.grid(True)
|
||||
|
||||
# 添加统计信息
|
||||
stats_text = (
|
||||
f"原始点数: {len(previous_points)}\n"
|
||||
f"过滤点数: {len(filtered_points)}\n"
|
||||
f"保留点数: {len(current_points)}\n"
|
||||
f"过滤率: {len(filtered_points)/len(previous_points)*100:.1f}%"
|
||||
)
|
||||
plt.figtext(0.02, 0.02, stats_text, fontsize=10,
|
||||
bbox=dict(facecolor='white', alpha=0.8))
|
||||
|
||||
# 添加图例
|
||||
plt.legend(loc='upper right', fontsize=10)
|
||||
|
||||
# 调整布局
|
||||
plt.tight_layout()
|
||||
|
||||
# 保存图形
|
||||
save_name = save_name or step_name.lower().replace(' ', '_')
|
||||
save_path = os.path.join(
|
||||
self.output_dir, 'filter_imgs', f'filter_{save_name}.png')
|
||||
plt.savefig(save_path, dpi=300, bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
self.logger.info(
|
||||
f"{step_name}过滤可视化结果已保存至 {save_path}\n"
|
||||
f"过滤掉 {len(filtered_points)} 个点,"
|
||||
f"保留 {len(current_points)} 个点,"
|
||||
f"过滤率 {len(filtered_points)/len(previous_points)*100:.1f}%"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# 测试代码
|
||||
import numpy as np
|
||||
from datetime import datetime
|
||||
|
||||
# 创建测试数据
|
||||
np.random.seed(42)
|
||||
n_points = 1000
|
||||
|
||||
# 生成随机点
|
||||
test_data = pd.DataFrame({
|
||||
'lon': np.random.uniform(120, 121, n_points),
|
||||
'lat': np.random.uniform(30, 31, n_points),
|
||||
'file': [f'img_{i}.jpg' for i in range(n_points)],
|
||||
'date': [datetime.now() for _ in range(n_points)]
|
||||
})
|
||||
|
||||
# 随机选择点作为过滤后的结果
|
||||
filtered_data = test_data.sample(n=800)
|
||||
|
||||
# 测试可视化
|
||||
visualizer = FilterVisualizer('test_output')
|
||||
os.makedirs('test_output', exist_ok=True)
|
||||
|
||||
visualizer.visualize_filter_step(
|
||||
filtered_data,
|
||||
test_data,
|
||||
"Test Filter"
|
||||
)
|
Loading…
Reference in New Issue
Block a user