UAV_odm_merge/odm_preprocess.py

347 lines
12 KiB
Python
Raw Normal View History

2024-12-30 17:34:21 +08:00
import os
import shutil
from datetime import timedelta
from dataclasses import dataclass
2024-12-30 20:41:22 +08:00
from typing import Dict, Optional
2024-12-30 17:34:21 +08:00
import matplotlib.pyplot as plt
import pandas as pd
from tqdm import tqdm
from filter.cluster_filter import GPSCluster
from filter.time_group_overlap_filter import TimeGroupOverlapFilter
from filter.gps_filter import GPSFilter
from utils.odm_monitor import ODMProcessMonitor
from utils.gps_extractor import GPSExtractor
from utils.grid_divider import GridDivider
from utils.logger import setup_logger
from utils.visualizer import FilterVisualizer
from post_pro.merge_tif import MergeTif
from tools.test_docker_run import run_docker_command
from post_pro.merge_obj import MergeObj
from post_pro.merge_ply import MergePly
@dataclass
class PreprocessConfig:
"""预处理配置类"""
image_dir: str
2024-12-30 20:41:22 +08:00
output_dir: Optional[str] = None
2024-12-30 17:34:21 +08:00
# 聚类过滤参数
cluster_eps: float = 0.01
cluster_min_samples: int = 5
# 时间组重叠过滤参数
time_group_overlap_threshold: float = 0.7
time_group_interval: timedelta = timedelta(minutes=5)
# 孤立点过滤参数
filter_distance_threshold: float = 0.001 # 经纬度距离
filter_min_neighbors: int = 6
# 密集点过滤参数
filter_grid_size: float = 0.001
filter_dense_distance_threshold: float = 10 # 普通距离,单位:米
filter_time_threshold: timedelta = timedelta(minutes=5)
# 网格划分参数
grid_overlap: float = 0.05
grid_size: float = 500
# 几个pipline过程是否开启
2024-12-30 20:41:22 +08:00
fast_mode: bool = False
2024-12-30 17:34:21 +08:00
class ImagePreprocessor:
def __init__(self, config: PreprocessConfig):
self.config = config
2024-12-30 20:41:22 +08:00
self.grandpa_dir = os.path.dirname(
os.path.dirname(self.config.image_dir))
self.config.output_dir = os.path.join(self.grandpa_dir, 'preprocess')
2024-12-30 17:34:21 +08:00
# 清理并重建输出目录
if os.path.exists(config.output_dir):
self._clean_output_dir()
self._setup_output_dirs()
# 初始化其他组件
self.logger = setup_logger(config.output_dir)
self.gps_points = None
self.odm_monitor = ODMProcessMonitor(
2024-12-30 20:41:22 +08:00
config.output_dir, fast_mode=config.fast_mode)
2024-12-30 17:34:21 +08:00
self.visualizer = FilterVisualizer(config.output_dir)
def _clean_output_dir(self):
"""清理输出目录"""
try:
shutil.rmtree(self.config.output_dir)
print(f"已清理输出目录: {self.config.output_dir}")
except Exception as e:
print(f"清理输出目录时发生错误: {str(e)}")
raise
def _setup_output_dirs(self):
"""创建必要的输出目录结构"""
try:
# 创建主输出目录
os.makedirs(self.config.output_dir)
# 创建过滤图像保存目录
os.makedirs(os.path.join(self.config.output_dir, 'filter_imgs'))
# 创建日志目录
os.makedirs(os.path.join(self.config.output_dir, 'logs'))
print(f"已创建输出目录结构: {self.config.output_dir}")
except Exception as e:
print(f"创建输出目录时发生错误: {str(e)}")
raise
def extract_gps(self) -> pd.DataFrame:
"""提取GPS数据"""
self.logger.info("开始提取GPS数据")
extractor = GPSExtractor(self.config.image_dir)
self.gps_points = extractor.extract_all_gps()
self.logger.info(f"成功提取 {len(self.gps_points)} 个GPS点")
return self.gps_points
2024-12-30 20:41:22 +08:00
def cluster(self, previous_points) -> pd.DataFrame:
2024-12-30 17:34:21 +08:00
"""使用DBSCAN对GPS点进行聚类只保留最大的类"""
self.logger.info("开始聚类")
# 创建聚类器并执行聚类
clusterer = GPSCluster(
2024-12-30 20:41:22 +08:00
previous_points, output_dir=self.config.output_dir,
2024-12-30 17:34:21 +08:00
eps=self.config.cluster_eps, min_samples=self.config.cluster_min_samples)
# 获取主要类别的点
self.clustered_points = clusterer.fit()
# 获取统计信息并记录
2024-12-30 20:41:22 +08:00
stats, retained_points, removed_points = clusterer.get_cluster_stats(
self.clustered_points)
2024-12-30 17:34:21 +08:00
self.logger.info(
f"聚类完成:主要类别包含 {stats['main_cluster_points']} 个点,"
f"噪声点 {stats['noise_points']}"
)
# 可视化聚类结果
self.visualizer.visualize_filter_step(
2024-12-30 20:41:22 +08:00
retained_points, removed_points, "1-Clustering")
# 移动被过滤的图片
self.move_images(removed_points, "cluster")
return retained_points
2024-12-30 17:34:21 +08:00
2024-12-30 20:41:22 +08:00
def filter_time_group_overlap(self, previous_points) -> pd.DataFrame:
2024-12-30 17:34:21 +08:00
"""过滤重叠的时间组"""
self.logger.info("开始过滤重叠时间组")
self.logger.info("开始过滤重叠时间组")
filter = TimeGroupOverlapFilter(
self.config.image_dir,
self.config.output_dir,
overlap_threshold=self.config.time_group_overlap_threshold
)
deleted_files = filter.filter_overlapping_groups(
time_threshold=self.config.time_group_interval
)
# 更新GPS点数据移除被删除的图像
2024-12-30 20:41:22 +08:00
retained_points = previous_points[~previous_points['file'].isin(
deleted_files)]
removed_points = previous_points[previous_points['file'].isin(
2024-12-30 17:34:21 +08:00
deleted_files)]
2024-12-30 20:41:22 +08:00
self.logger.info(f"重叠时间组过滤后剩余 {len(retained_points)} 个GPS点")
2024-12-30 17:34:21 +08:00
# 可视化过滤结果
self.visualizer.visualize_filter_step(
2024-12-30 20:41:22 +08:00
retained_points, removed_points, "2-Time Group Overlap")
# 移动被过滤的图片
self.move_images(removed_points, "time_group_overlap")
return retained_points
2024-12-30 17:34:21 +08:00
# TODO 过滤算法还需要更新
2024-12-30 20:41:22 +08:00
def filter_points(self, previous_points) -> pd.DataFrame:
2024-12-30 17:34:21 +08:00
"""过滤GPS点"""
self.logger.info("开始过滤GPS点")
filter = GPSFilter(self.config.output_dir)
# 过滤孤立点
self.logger.info(
f"开始过滤孤立点(距离阈值: {self.config.filter_distance_threshold}, "
f"最小邻居数: {self.config.filter_min_neighbors})"
)
2024-12-30 20:41:22 +08:00
retained_points, removed_points = filter.filter_isolated_points(
previous_points,
2024-12-30 17:34:21 +08:00
self.config.filter_distance_threshold,
self.config.filter_min_neighbors,
)
2024-12-30 20:41:22 +08:00
self.logger.info(f"孤立点过滤后剩余 {len(retained_points)} 个GPS点")
2024-12-30 17:34:21 +08:00
# 可视化孤立点过滤结果
self.visualizer.visualize_filter_step(
2024-12-30 20:41:22 +08:00
retained_points, removed_points, "3-Isolated Points")
# 移动被过滤的图片
self.move_images(removed_points, "isolated_points")
2024-12-30 17:34:21 +08:00
# # 过滤密集点
# previous_points = self.gps_points.copy()
# self.logger.info(
# f"开始过滤密集点(网格大小: {self.config.filter_grid_size}, "
# f"距离阈值: {self.config.filter_dense_distance_threshold})"
# )
# self.gps_points = filter.filter_dense_points(
# self.gps_points,
# grid_size=self.config.filter_grid_size,
# distance_threshold=self.config.filter_dense_distance_threshold,
# time_threshold=self.config.filter_time_threshold,
# )
# self.logger.info(f"密集点过滤后剩余 {len(self.gps_points)} 个GPS点")
# # 可视化密集点过滤结果
# self.visualizer.visualize_filter_step(
# self.gps_points, previous_points, "4-Dense Points")
2024-12-30 20:41:22 +08:00
return retained_points
2024-12-30 17:34:21 +08:00
def divide_grids(self) -> Dict[int, pd.DataFrame]:
"""划分网格"""
self.logger.info(f"开始划分网格 (重叠率: {self.config.grid_overlap})")
grid_divider = GridDivider(
overlap=self.config.grid_overlap,
output_dir=self.config.output_dir
)
grids = grid_divider.divide_grids(
self.gps_points, grid_size=self.config.grid_size
)
grid_points = grid_divider.assign_to_grids(self.gps_points, grids)
self.logger.info(f"成功划分为 {len(grid_points)} 个网格")
2024-12-30 20:41:22 +08:00
2024-12-30 17:34:21 +08:00
# 生成image_groups.txt文件
try:
2024-12-30 20:41:22 +08:00
groups_file = os.path.join(
os.path.dirname(self.config.image_dir), "image_groups.txt"
)
2024-12-30 17:34:21 +08:00
self.logger.info(f"开始生成分组文件: {groups_file}")
2024-12-30 20:41:22 +08:00
2024-12-30 17:34:21 +08:00
with open(groups_file, 'w') as f:
for grid_idx, points_lt in grid_points.items():
# 使用ASCII字母作为组标识A, B, C...
group_letter = chr(65 + grid_idx) # 65是ASCII中'A'的编码
2024-12-30 20:41:22 +08:00
2024-12-30 17:34:21 +08:00
# 为每个网格中的图像写入分组信息
for point in points_lt:
f.write(f"{point['file']} {group_letter}\n")
2024-12-30 20:41:22 +08:00
2024-12-30 17:34:21 +08:00
self.logger.info(f"分组文件生成成功: {groups_file}")
except Exception as e:
self.logger.error(f"生成分组文件时发生错误: {str(e)}", exc_info=True)
raise
2024-12-30 20:41:22 +08:00
def move_images(self, removed_points: pd.DataFrame, step_name: str):
"""
将被过滤掉的图片移动到ret文件夹中
2024-12-30 17:34:21 +08:00
2024-12-30 20:41:22 +08:00
Args:
removed_points: 被过滤掉的GPS点对应的数据
step_name: 过滤步骤名称用于创建子文件夹
"""
if removed_points.empty:
return
2024-12-30 17:34:21 +08:00
2024-12-30 20:41:22 +08:00
# 创建ret目录和对应步骤的子目录
ret_dir = os.path.join(self.grandpa_dir, 'ret')
os.makedirs(ret_dir, exist_ok=True)
2024-12-30 17:34:21 +08:00
2024-12-30 20:41:22 +08:00
self.logger.info(f"开始移动{step_name}步骤中被过滤的图片")
2024-12-30 17:34:21 +08:00
2024-12-30 20:41:22 +08:00
# 移动每张被过滤的图片
for _, point in removed_points.iterrows():
src_path = os.path.join(self.config.image_dir, point['file'])
dst_path = os.path.join(ret_dir, point['file'])
2024-12-30 17:34:21 +08:00
2024-12-30 20:41:22 +08:00
try:
shutil.move(src_path, dst_path)
except Exception as e:
self.logger.warning(f"移动图片 {point['file']} 时发生错误: {str(e)}")
2024-12-30 17:34:21 +08:00
2024-12-30 20:41:22 +08:00
self.logger.info(f"完成移动 {len(removed_points)} 张被{step_name}过滤的图片")
def restore_filtered_images(self):
"""将ret文件夹中的图片恢复到原始图片目录"""
try:
# 获取ret文件夹路径
ret_dir = os.path.join(self.grandpa_dir, 'ret')
if not os.path.exists(ret_dir):
self.logger.info("没有找到ret文件夹跳过恢复步骤")
return
self.logger.info("开始恢复被过滤的图片")
# 获取ret文件夹中的所有图片
filtered_images = os.listdir(ret_dir)
# 将图片移回原始目录
for img in filtered_images:
src_path = os.path.join(ret_dir, img)
dst_path = os.path.join(self.config.image_dir, img)
try:
shutil.move(src_path, dst_path)
except Exception as e:
self.logger.warning(f"恢复图片 {img} 时发生错误: {str(e)}")
self.logger.info(f"成功恢复 {len(filtered_images)} 张图片")
except Exception as e:
self.logger.error(f"恢复图片过程中发生错误: {str(e)}", exc_info=True)
raise
2024-12-30 17:34:21 +08:00
def process(self):
"""执行完整的预处理流程"""
try:
self.extract_gps()
2024-12-30 20:41:22 +08:00
self.gps_points = self.cluster(self.gps_points)
# self.gps_points = self.filter_time_group_overlap(self.gps_points)
self.gps_points = self.filter_points(self.gps_points)
self.divide_grids()
2024-12-30 17:34:21 +08:00
self.logger.info("预处理任务完成")
2024-12-30 20:41:22 +08:00
self.odm_monitor.run_odm_with_monitor(
self.grandpa_dir, self.config.fast_mode)
self.restore_filtered_images()
2024-12-30 17:34:21 +08:00
except Exception as e:
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
raise
if __name__ == "__main__":
# 创建配置
config = PreprocessConfig(
2024-12-30 20:41:22 +08:00
image_dir=r"G:\error_data\20241104140457\project\images",
2024-12-30 17:34:21 +08:00
cluster_eps=0.01,
cluster_min_samples=5,
# 添加时间组重叠过滤参数
time_group_overlap_threshold=0.7,
time_group_interval=timedelta(minutes=5),
filter_distance_threshold=0.001,
filter_min_neighbors=6,
filter_grid_size=0.001,
filter_dense_distance_threshold=10,
filter_time_threshold=timedelta(minutes=5),
2024-12-30 20:41:22 +08:00
grid_size=1000,
grid_overlap=0.05,
2024-12-30 17:34:21 +08:00
2024-12-30 20:41:22 +08:00
fast_mode=False,
2024-12-30 17:34:21 +08:00
)
# 创建处理器并执行
processor = ImagePreprocessor(config)
processor.process()