大改:使用odm的merge

This commit is contained in:
龙澳 2024-12-30 20:41:22 +08:00
parent f6a5068350
commit 54ed939dc7
5 changed files with 160 additions and 162 deletions

View File

@ -63,7 +63,7 @@ class GPSCluster:
clustered_points: 带有聚类标签的DataFrame
返回:
聚类统计信息的字典
聚类统计信息的字典, 主类, 噪声点
"""
main_cluster_points = sum(clustered_points["cluster"] == 1)
stats = {
@ -72,11 +72,4 @@ class GPSCluster:
"noise_points": sum(clustered_points["cluster"] == -1),
}
noise_cluster = self.get_noise_cluster(clustered_points)
return stats
def get_main_cluster(self, clustered_points):
return clustered_points[clustered_points["cluster"] == 1]
def get_noise_cluster(self, clustered_points):
return clustered_points[clustered_points["cluster"] == -1]
return stats, clustered_points[clustered_points["cluster"] == 1], clustered_points[clustered_points["cluster"] == -1]

View File

@ -243,6 +243,7 @@ class GPSFilter:
f"删除孤立点: {row['file']} (邻居数: {neighbors_count[i]})")
filtered_df = points_df[~points_df['file'].isin(isolated_points)]
removed_df = points_df[points_df['file'].isin(isolated_points)]
self.logger.info(
f"孤立点过滤完成,共删除 {len(isolated_points)} 个点,剩余 {len(filtered_df)} 个点")
return filtered_df
return filtered_df, removed_df

View File

@ -2,7 +2,7 @@ import os
import shutil
from datetime import timedelta
from dataclasses import dataclass
from typing import Dict
from typing import Dict, Optional
import matplotlib.pyplot as plt
import pandas as pd
@ -27,7 +27,7 @@ class PreprocessConfig:
"""预处理配置类"""
image_dir: str
output_dir: str
output_dir: Optional[str] = None
# 聚类过滤参数
cluster_eps: float = 0.01
cluster_min_samples: int = 5
@ -45,13 +45,15 @@ class PreprocessConfig:
grid_overlap: float = 0.05
grid_size: float = 500
# 几个pipline过程是否开启
mode: str = "快拼模式"
fast_mode: bool = False
class ImagePreprocessor:
def __init__(self, config: PreprocessConfig):
self.config = config
self.grandpa_dir = os.path.dirname(
os.path.dirname(self.config.image_dir))
self.config.output_dir = os.path.join(self.grandpa_dir, 'preprocess')
# 清理并重建输出目录
if os.path.exists(config.output_dir):
self._clean_output_dir()
@ -61,7 +63,7 @@ class ImagePreprocessor:
self.logger = setup_logger(config.output_dir)
self.gps_points = None
self.odm_monitor = ODMProcessMonitor(
config.output_dir, mode=config.mode)
config.output_dir, fast_mode=config.fast_mode)
self.visualizer = FilterVisualizer(config.output_dir)
def _clean_output_dir(self):
@ -98,22 +100,21 @@ class ImagePreprocessor:
self.logger.info(f"成功提取 {len(self.gps_points)} 个GPS点")
return self.gps_points
def cluster(self) -> pd.DataFrame:
def cluster(self, previous_points) -> pd.DataFrame:
"""使用DBSCAN对GPS点进行聚类只保留最大的类"""
self.logger.info("开始聚类")
previous_points = self.gps_points.copy()
# 创建聚类器并执行聚类
clusterer = GPSCluster(
self.gps_points, output_dir=self.config.output_dir,
previous_points, output_dir=self.config.output_dir,
eps=self.config.cluster_eps, min_samples=self.config.cluster_min_samples)
# 获取主要类别的点
self.clustered_points = clusterer.fit()
self.gps_points = clusterer.get_main_cluster(self.clustered_points)
# 获取统计信息并记录
stats = clusterer.get_cluster_stats(self.clustered_points)
stats, retained_points, removed_points = clusterer.get_cluster_stats(
self.clustered_points)
self.logger.info(
f"聚类完成:主要类别包含 {stats['main_cluster_points']} 个点,"
f"噪声点 {stats['noise_points']}"
@ -121,16 +122,16 @@ class ImagePreprocessor:
# 可视化聚类结果
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "1-Clustering")
retained_points, removed_points, "1-Clustering")
# 移动被过滤的图片
self.move_images(removed_points, "cluster")
return retained_points
return self.gps_points
def filter_time_group_overlap(self) -> pd.DataFrame:
def filter_time_group_overlap(self, previous_points) -> pd.DataFrame:
"""过滤重叠的时间组"""
self.logger.info("开始过滤重叠时间组")
self.logger.info("开始过滤重叠时间组")
previous_points = self.gps_points.copy()
filter = TimeGroupOverlapFilter(
self.config.image_dir,
@ -143,39 +144,43 @@ class ImagePreprocessor:
)
# 更新GPS点数据移除被删除的图像
self.gps_points = self.gps_points[~self.gps_points['file'].isin(
retained_points = previous_points[~previous_points['file'].isin(
deleted_files)]
self.logger.info(f"重叠时间组过滤后剩余 {len(self.gps_points)} 个GPS点")
removed_points = previous_points[previous_points['file'].isin(
deleted_files)]
self.logger.info(f"重叠时间组过滤后剩余 {len(retained_points)} 个GPS点")
# 可视化过滤结果
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "2-Time Group Overlap")
return self.gps_points
retained_points, removed_points, "2-Time Group Overlap")
# 移动被过滤的图片
self.move_images(removed_points, "time_group_overlap")
return retained_points
# TODO 过滤算法还需要更新
def filter_points(self) -> pd.DataFrame:
def filter_points(self, previous_points) -> pd.DataFrame:
"""过滤GPS点"""
self.logger.info("开始过滤GPS点")
filter = GPSFilter(self.config.output_dir)
# 过滤孤立点
previous_points = self.gps_points.copy()
self.logger.info(
f"开始过滤孤立点(距离阈值: {self.config.filter_distance_threshold}, "
f"最小邻居数: {self.config.filter_min_neighbors})"
)
self.gps_points = filter.filter_isolated_points(
self.gps_points,
retained_points, removed_points = filter.filter_isolated_points(
previous_points,
self.config.filter_distance_threshold,
self.config.filter_min_neighbors,
)
self.logger.info(f"孤立点过滤后剩余 {len(self.gps_points)} 个GPS点")
self.logger.info(f"孤立点过滤后剩余 {len(retained_points)} 个GPS点")
# 可视化孤立点过滤结果
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "3-Isolated Points")
retained_points, removed_points, "3-Isolated Points")
# 移动被过滤的图片
self.move_images(removed_points, "isolated_points")
# # 过滤密集点
# previous_points = self.gps_points.copy()
@ -195,7 +200,7 @@ class ImagePreprocessor:
# self.visualizer.visualize_filter_step(
# self.gps_points, previous_points, "4-Dense Points")
return self.gps_points
return retained_points
def divide_grids(self) -> Dict[int, pd.DataFrame]:
"""划分网格"""
@ -212,7 +217,9 @@ class ImagePreprocessor:
# 生成image_groups.txt文件
try:
groups_file = os.path.join(self.config.output_dir, "image_groups.txt")
groups_file = os.path.join(
os.path.dirname(self.config.image_dir), "image_groups.txt"
)
self.logger.info(f"开始生成分组文件: {groups_file}")
with open(groups_file, 'w') as f:
@ -229,59 +236,80 @@ class ImagePreprocessor:
self.logger.error(f"生成分组文件时发生错误: {str(e)}", exc_info=True)
raise
return grid_points
def move_images(self, removed_points: pd.DataFrame, step_name: str):
"""
将被过滤掉的图片移动到ret文件夹中
def copy_images(self, grid_points: Dict[int, pd.DataFrame]):
"""复制图像到目标文件夹"""
self.logger.info("开始复制图像文件")
self.logger.info("开始复制图像文件")
Args:
removed_points: 被过滤掉的GPS点对应的数据
step_name: 过滤步骤名称用于创建子文件夹
"""
if removed_points.empty:
return
for grid_idx, points in grid_points.items():
output_dir = os.path.join(
self.config.output_dir, f"grid_{grid_idx + 1}", "project", "images"
)
# 创建ret目录和对应步骤的子目录
ret_dir = os.path.join(self.grandpa_dir, 'ret')
os.makedirs(ret_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
self.logger.info(f"开始移动{step_name}步骤中被过滤的图片")
for point in tqdm(points, desc=f"复制网格 {grid_idx + 1} 的图像"):
src = os.path.join(self.config.image_dir, point["file"])
dst = os.path.join(output_dir, point["file"])
shutil.copy(src, dst)
self.logger.info(f"网格 {grid_idx + 1} 包含 {len(points)} 张图像")
# 移动每张被过滤的图片
for _, point in removed_points.iterrows():
src_path = os.path.join(self.config.image_dir, point['file'])
dst_path = os.path.join(ret_dir, point['file'])
def merge_tif(self, grid_points: Dict[int, pd.DataFrame]):
"""合并所有网格的影像产品"""
self.logger.info("开始合并所有影像产品")
merger = MergeTif(self.config.output_dir)
merger.merge_all_tifs(grid_points)
try:
shutil.move(src_path, dst_path)
except Exception as e:
self.logger.warning(f"移动图片 {point['file']} 时发生错误: {str(e)}")
def merge_obj(self, grid_points: Dict[int, pd.DataFrame]):
"""合并所有网格的OBJ模型"""
self.logger.info("开始合并OBJ模型")
merger = MergeObj(self.config.output_dir)
merger.merge_grid_obj(grid_points)
self.logger.info(f"完成移动 {len(removed_points)} 张被{step_name}过滤的图片")
def merge_ply(self, grid_points: Dict[int, pd.DataFrame]):
"""合并所有网格的PLY点云"""
self.logger.info("开始合并PLY点云")
merger = MergePly(self.config.output_dir)
merger.merge_grid_ply(grid_points)
def restore_filtered_images(self):
"""将ret文件夹中的图片恢复到原始图片目录"""
try:
# 获取ret文件夹路径
ret_dir = os.path.join(self.grandpa_dir, 'ret')
if not os.path.exists(ret_dir):
self.logger.info("没有找到ret文件夹跳过恢复步骤")
return
self.logger.info("开始恢复被过滤的图片")
# 获取ret文件夹中的所有图片
filtered_images = os.listdir(ret_dir)
# 将图片移回原始目录
for img in filtered_images:
src_path = os.path.join(ret_dir, img)
dst_path = os.path.join(self.config.image_dir, img)
try:
shutil.move(src_path, dst_path)
except Exception as e:
self.logger.warning(f"恢复图片 {img} 时发生错误: {str(e)}")
self.logger.info(f"成功恢复 {len(filtered_images)} 张图片")
except Exception as e:
self.logger.error(f"恢复图片过程中发生错误: {str(e)}", exc_info=True)
raise
def process(self):
"""执行完整的预处理流程"""
try:
self.extract_gps()
self.cluster()
# self.filter_time_group_overlap()
self.filter_points()
grid_points = self.divide_grids()
self.copy_images(grid_points)
self.gps_points = self.cluster(self.gps_points)
# self.gps_points = self.filter_time_group_overlap(self.gps_points)
self.gps_points = self.filter_points(self.gps_points)
self.divide_grids()
self.logger.info("预处理任务完成")
self.odm_monitor.process_all_grids(grid_points)
self.merge_tif(grid_points)
self.merge_obj(grid_points)
self.merge_ply(grid_points)
self.odm_monitor.run_odm_with_monitor(
self.grandpa_dir, self.config.fast_mode)
self.restore_filtered_images()
except Exception as e:
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
raise
@ -290,8 +318,7 @@ class ImagePreprocessor:
if __name__ == "__main__":
# 创建配置
config = PreprocessConfig(
image_dir=r"E:\datasets\UAV\134\project\images",
output_dir=r"G:\ODM_output\134_test",
image_dir=r"G:\error_data\20241104140457\project\images",
cluster_eps=0.01,
cluster_min_samples=5,
@ -307,11 +334,11 @@ if __name__ == "__main__":
filter_dense_distance_threshold=10,
filter_time_threshold=timedelta(minutes=5),
grid_size=300,
grid_overlap=0.1,
grid_size=1000,
grid_overlap=0.05,
mode="重建模式",
fast_mode=False,
)
# 创建处理器并执行

View File

@ -8,33 +8,31 @@ import pandas as pd
class ODMProcessMonitor:
"""ODM处理监控器"""
def __init__(self, output_dir: str, mode: str = "快拼模式"):
def __init__(self, output_dir: str, fast_mode: bool):
self.output_dir = output_dir
self.logger = logging.getLogger('UAV_Preprocess.ODMMonitor')
self.mode = mode
self.fast_mode = fast_mode
def _check_success(self, grid_dir: str) -> bool:
"""检查ODM是否执行成功"""
success_markers = ['odm_orthophoto', 'odm_georeferencing']
if self.mode != "快拼模式":
if not self.fast_mode:
success_markers.append('odm_texturing')
return all(os.path.exists(os.path.join(grid_dir, 'project', marker)) for marker in success_markers)
def run_odm_with_monitor(self, grid_dir: str, grid_idx: int, fast_mode: bool = True) -> Tuple[bool, str]:
def run_odm_with_monitor(self, project_dir: str, fast_mode: bool = True) -> Tuple[bool, str]:
"""运行ODM命令"""
self.logger.info(f"开始处理网格 {grid_idx + 1}")
# 构建Docker命令
grid_dir = grid_dir[0].lower()+grid_dir[1:].replace('\\', '/')
docker_command = (
f"docker run --gpus all -ti --rm "
f"-v {grid_dir}:/datasets "
f"-v {project_dir}:/datasets "
f"opendronemap/odm:gpu "
f"--project-path /datasets project "
f"--max-concurrency 10 "
f"--max-concurrency 15 "
f"--force-gps "
f"--feature-quality lowest "
f"--orthophoto-resolution 10 "
f"--split-overlap 0 "
)
if fast_mode:
@ -53,26 +51,7 @@ class ODMProcessMonitor:
self.logger.info(f"==========stdout==========: {stdout}")
self.logger.error(f"==========stderr==========: {stderr}")
# 检查执行结果
if self._check_success(grid_dir):
self.logger.info(f"网格 {grid_idx + 1} 处理成功")
return True, ""
if self._check_success(image_dir):
self.logger.info(f"处理成功")
else:
self.logger.error(f"网格 {grid_idx + 1} 处理失败")
return False, f"网格 {grid_idx + 1} 处理失败"
def process_all_grids(self, grid_points: Dict[int, pd.DataFrame]):
"""处理所有网格"""
self.logger.info("开始执行网格处理")
for grid_idx in grid_points.keys():
grid_dir = os.path.join(
self.output_dir, f'grid_{grid_idx + 1}'
)
success, error_msg = self.run_odm_with_monitor(
grid_dir=grid_dir,
grid_idx=grid_idx,
fast_mode=(self.mode == "快拼模式")
)
if not success:
raise Exception(f"网格 {grid_idx + 1} 处理失败: {error_msg}")
self.logger.error(f"处理失败")

View File

@ -19,30 +19,27 @@ class FilterVisualizer:
self.logger = logging.getLogger('UAV_Preprocess.Visualizer')
def visualize_filter_step(self,
current_points: pd.DataFrame,
previous_points: pd.DataFrame,
retained_points: pd.DataFrame,
filtered_points: pd.DataFrame,
step_name: str,
save_name: Optional[str] = None):
"""
可视化单个过滤步骤的结果
Args:
current_points: 当前步骤后的点
previous_points: 上一步骤的点
retained_points: 留下的点
filtered_points: 过滤掉的点
step_name: 步骤名称
save_name: 保存文件名默认为step_name
"""
total_points_len = len(retained_points) + len(filtered_points)
self.logger.info(f"开始生成{step_name}的可视化结果")
# 找出被过滤掉的点
filtered_files = set(previous_points['file']) - set(current_points['file'])
filtered_points = previous_points[previous_points['file'].isin(filtered_files)]
# 创建图形
plt.figure(figsize=(20, 16))
# 绘制保留的点
plt.scatter(current_points['lon'], current_points['lat'],
plt.scatter(retained_points['lon'], retained_points['lat'],
color='blue', label='Retained Points',
alpha=0.6, s=50)
@ -54,7 +51,7 @@ class FilterVisualizer:
# 设置图形属性
plt.title(f"GPS Points After {step_name}\n"
f"(Filtered: {len(filtered_points)}, Retained: {len(current_points)})",
f"(Filtered: {len(filtered_points)}, Retained: {len(retained_points)})",
fontsize=14)
plt.xlabel("Longitude", fontsize=12)
plt.ylabel("Latitude", fontsize=12)
@ -62,10 +59,10 @@ class FilterVisualizer:
# 添加统计信息
stats_text = (
f"Original Points: {len(previous_points)}\n"
f"Original Points: {total_points_len}\n"
f"Filtered Points: {len(filtered_points)}\n"
f"Remaining Points: {len(current_points)}\n"
f"Filter Rate: {len(filtered_points)/len(previous_points)*100:.1f}%"
f"Remaining Points: {len(retained_points)}\n"
f"Filter Rate: {len(filtered_points)/total_points_len*100:.1f}%"
)
plt.figtext(0.02, 0.02, stats_text, fontsize=10,
bbox=dict(facecolor='white', alpha=0.8))
@ -78,15 +75,16 @@ class FilterVisualizer:
# 保存图形
save_name = save_name or step_name.lower().replace(' ', '_')
save_path = os.path.join(self.output_dir, 'filter_imgs', f'filter_{save_name}.png')
save_path = os.path.join(
self.output_dir, 'filter_imgs_visual', f'filter_{save_name}.png')
plt.savefig(save_path, dpi=300, bbox_inches='tight')
plt.close()
self.logger.info(
f"{step_name}过滤可视化结果已保存至 {save_path}\n"
f"过滤掉 {len(filtered_points)} 个点,"
f"保留 {len(current_points)} 个点,"
f"过滤率 {len(filtered_points)/len(previous_points)*100:.1f}%"
f"保留 {len(retained_points)} 个点,"
f"过滤率 {len(filtered_points)/total_points_len*100:.1f}%"
)