大改:使用odm的merge
This commit is contained in:
parent
f6a5068350
commit
54ed939dc7
@ -63,7 +63,7 @@ class GPSCluster:
|
||||
clustered_points: 带有聚类标签的DataFrame
|
||||
|
||||
返回:
|
||||
聚类统计信息的字典
|
||||
聚类统计信息的字典, 主类, 噪声点
|
||||
"""
|
||||
main_cluster_points = sum(clustered_points["cluster"] == 1)
|
||||
stats = {
|
||||
@ -72,11 +72,4 @@ class GPSCluster:
|
||||
"noise_points": sum(clustered_points["cluster"] == -1),
|
||||
}
|
||||
|
||||
noise_cluster = self.get_noise_cluster(clustered_points)
|
||||
return stats
|
||||
|
||||
def get_main_cluster(self, clustered_points):
|
||||
return clustered_points[clustered_points["cluster"] == 1]
|
||||
|
||||
def get_noise_cluster(self, clustered_points):
|
||||
return clustered_points[clustered_points["cluster"] == -1]
|
||||
return stats, clustered_points[clustered_points["cluster"] == 1], clustered_points[clustered_points["cluster"] == -1]
|
||||
|
@ -243,6 +243,7 @@ class GPSFilter:
|
||||
f"删除孤立点: {row['file']} (邻居数: {neighbors_count[i]})")
|
||||
|
||||
filtered_df = points_df[~points_df['file'].isin(isolated_points)]
|
||||
removed_df = points_df[points_df['file'].isin(isolated_points)]
|
||||
self.logger.info(
|
||||
f"孤立点过滤完成,共删除 {len(isolated_points)} 个点,剩余 {len(filtered_df)} 个点")
|
||||
return filtered_df
|
||||
return filtered_df, removed_df
|
||||
|
@ -2,7 +2,7 @@ import os
|
||||
import shutil
|
||||
from datetime import timedelta
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict
|
||||
from typing import Dict, Optional
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
@ -27,7 +27,7 @@ class PreprocessConfig:
|
||||
"""预处理配置类"""
|
||||
|
||||
image_dir: str
|
||||
output_dir: str
|
||||
output_dir: Optional[str] = None
|
||||
# 聚类过滤参数
|
||||
cluster_eps: float = 0.01
|
||||
cluster_min_samples: int = 5
|
||||
@ -45,13 +45,15 @@ class PreprocessConfig:
|
||||
grid_overlap: float = 0.05
|
||||
grid_size: float = 500
|
||||
# 几个pipline过程是否开启
|
||||
mode: str = "快拼模式"
|
||||
fast_mode: bool = False
|
||||
|
||||
|
||||
class ImagePreprocessor:
|
||||
def __init__(self, config: PreprocessConfig):
|
||||
self.config = config
|
||||
|
||||
self.grandpa_dir = os.path.dirname(
|
||||
os.path.dirname(self.config.image_dir))
|
||||
self.config.output_dir = os.path.join(self.grandpa_dir, 'preprocess')
|
||||
# 清理并重建输出目录
|
||||
if os.path.exists(config.output_dir):
|
||||
self._clean_output_dir()
|
||||
@ -61,7 +63,7 @@ class ImagePreprocessor:
|
||||
self.logger = setup_logger(config.output_dir)
|
||||
self.gps_points = None
|
||||
self.odm_monitor = ODMProcessMonitor(
|
||||
config.output_dir, mode=config.mode)
|
||||
config.output_dir, fast_mode=config.fast_mode)
|
||||
self.visualizer = FilterVisualizer(config.output_dir)
|
||||
|
||||
def _clean_output_dir(self):
|
||||
@ -98,22 +100,21 @@ class ImagePreprocessor:
|
||||
self.logger.info(f"成功提取 {len(self.gps_points)} 个GPS点")
|
||||
return self.gps_points
|
||||
|
||||
def cluster(self) -> pd.DataFrame:
|
||||
def cluster(self, previous_points) -> pd.DataFrame:
|
||||
"""使用DBSCAN对GPS点进行聚类,只保留最大的类"""
|
||||
self.logger.info("开始聚类")
|
||||
previous_points = self.gps_points.copy()
|
||||
|
||||
# 创建聚类器并执行聚类
|
||||
clusterer = GPSCluster(
|
||||
self.gps_points, output_dir=self.config.output_dir,
|
||||
previous_points, output_dir=self.config.output_dir,
|
||||
eps=self.config.cluster_eps, min_samples=self.config.cluster_min_samples)
|
||||
|
||||
# 获取主要类别的点
|
||||
self.clustered_points = clusterer.fit()
|
||||
self.gps_points = clusterer.get_main_cluster(self.clustered_points)
|
||||
|
||||
# 获取统计信息并记录
|
||||
stats = clusterer.get_cluster_stats(self.clustered_points)
|
||||
stats, retained_points, removed_points = clusterer.get_cluster_stats(
|
||||
self.clustered_points)
|
||||
self.logger.info(
|
||||
f"聚类完成:主要类别包含 {stats['main_cluster_points']} 个点,"
|
||||
f"噪声点 {stats['noise_points']} 个"
|
||||
@ -121,16 +122,16 @@ class ImagePreprocessor:
|
||||
|
||||
# 可视化聚类结果
|
||||
self.visualizer.visualize_filter_step(
|
||||
self.gps_points, previous_points, "1-Clustering")
|
||||
retained_points, removed_points, "1-Clustering")
|
||||
# 移动被过滤的图片
|
||||
self.move_images(removed_points, "cluster")
|
||||
return retained_points
|
||||
|
||||
return self.gps_points
|
||||
|
||||
def filter_time_group_overlap(self) -> pd.DataFrame:
|
||||
def filter_time_group_overlap(self, previous_points) -> pd.DataFrame:
|
||||
"""过滤重叠的时间组"""
|
||||
self.logger.info("开始过滤重叠时间组")
|
||||
|
||||
self.logger.info("开始过滤重叠时间组")
|
||||
previous_points = self.gps_points.copy()
|
||||
|
||||
filter = TimeGroupOverlapFilter(
|
||||
self.config.image_dir,
|
||||
@ -143,39 +144,43 @@ class ImagePreprocessor:
|
||||
)
|
||||
|
||||
# 更新GPS点数据,移除被删除的图像
|
||||
self.gps_points = self.gps_points[~self.gps_points['file'].isin(
|
||||
retained_points = previous_points[~previous_points['file'].isin(
|
||||
deleted_files)]
|
||||
self.logger.info(f"重叠时间组过滤后剩余 {len(self.gps_points)} 个GPS点")
|
||||
removed_points = previous_points[previous_points['file'].isin(
|
||||
deleted_files)]
|
||||
self.logger.info(f"重叠时间组过滤后剩余 {len(retained_points)} 个GPS点")
|
||||
|
||||
# 可视化过滤结果
|
||||
self.visualizer.visualize_filter_step(
|
||||
self.gps_points, previous_points, "2-Time Group Overlap")
|
||||
|
||||
return self.gps_points
|
||||
retained_points, removed_points, "2-Time Group Overlap")
|
||||
# 移动被过滤的图片
|
||||
self.move_images(removed_points, "time_group_overlap")
|
||||
return retained_points
|
||||
|
||||
# TODO 过滤算法还需要更新
|
||||
def filter_points(self) -> pd.DataFrame:
|
||||
def filter_points(self, previous_points) -> pd.DataFrame:
|
||||
"""过滤GPS点"""
|
||||
|
||||
self.logger.info("开始过滤GPS点")
|
||||
filter = GPSFilter(self.config.output_dir)
|
||||
|
||||
# 过滤孤立点
|
||||
previous_points = self.gps_points.copy()
|
||||
self.logger.info(
|
||||
f"开始过滤孤立点(距离阈值: {self.config.filter_distance_threshold}, "
|
||||
f"最小邻居数: {self.config.filter_min_neighbors})"
|
||||
)
|
||||
self.gps_points = filter.filter_isolated_points(
|
||||
self.gps_points,
|
||||
retained_points, removed_points = filter.filter_isolated_points(
|
||||
previous_points,
|
||||
self.config.filter_distance_threshold,
|
||||
self.config.filter_min_neighbors,
|
||||
)
|
||||
self.logger.info(f"孤立点过滤后剩余 {len(self.gps_points)} 个GPS点")
|
||||
self.logger.info(f"孤立点过滤后剩余 {len(retained_points)} 个GPS点")
|
||||
|
||||
# 可视化孤立点过滤结果
|
||||
self.visualizer.visualize_filter_step(
|
||||
self.gps_points, previous_points, "3-Isolated Points")
|
||||
retained_points, removed_points, "3-Isolated Points")
|
||||
# 移动被过滤的图片
|
||||
self.move_images(removed_points, "isolated_points")
|
||||
|
||||
# # 过滤密集点
|
||||
# previous_points = self.gps_points.copy()
|
||||
@ -195,7 +200,7 @@ class ImagePreprocessor:
|
||||
# self.visualizer.visualize_filter_step(
|
||||
# self.gps_points, previous_points, "4-Dense Points")
|
||||
|
||||
return self.gps_points
|
||||
return retained_points
|
||||
|
||||
def divide_grids(self) -> Dict[int, pd.DataFrame]:
|
||||
"""划分网格"""
|
||||
@ -209,79 +214,102 @@ class ImagePreprocessor:
|
||||
)
|
||||
grid_points = grid_divider.assign_to_grids(self.gps_points, grids)
|
||||
self.logger.info(f"成功划分为 {len(grid_points)} 个网格")
|
||||
|
||||
|
||||
# 生成image_groups.txt文件
|
||||
try:
|
||||
groups_file = os.path.join(self.config.output_dir, "image_groups.txt")
|
||||
groups_file = os.path.join(
|
||||
os.path.dirname(self.config.image_dir), "image_groups.txt"
|
||||
)
|
||||
self.logger.info(f"开始生成分组文件: {groups_file}")
|
||||
|
||||
|
||||
with open(groups_file, 'w') as f:
|
||||
for grid_idx, points_lt in grid_points.items():
|
||||
# 使用ASCII字母作为组标识(A, B, C...)
|
||||
group_letter = chr(65 + grid_idx) # 65是ASCII中'A'的编码
|
||||
|
||||
|
||||
# 为每个网格中的图像写入分组信息
|
||||
for point in points_lt:
|
||||
f.write(f"{point['file']} {group_letter}\n")
|
||||
|
||||
|
||||
self.logger.info(f"分组文件生成成功: {groups_file}")
|
||||
except Exception as e:
|
||||
self.logger.error(f"生成分组文件时发生错误: {str(e)}", exc_info=True)
|
||||
raise
|
||||
|
||||
return grid_points
|
||||
|
||||
def copy_images(self, grid_points: Dict[int, pd.DataFrame]):
|
||||
"""复制图像到目标文件夹"""
|
||||
self.logger.info("开始复制图像文件")
|
||||
self.logger.info("开始复制图像文件")
|
||||
def move_images(self, removed_points: pd.DataFrame, step_name: str):
|
||||
"""
|
||||
将被过滤掉的图片移动到ret文件夹中
|
||||
|
||||
for grid_idx, points in grid_points.items():
|
||||
output_dir = os.path.join(
|
||||
self.config.output_dir, f"grid_{grid_idx + 1}", "project", "images"
|
||||
)
|
||||
Args:
|
||||
removed_points: 被过滤掉的GPS点对应的数据
|
||||
step_name: 过滤步骤名称,用于创建子文件夹
|
||||
"""
|
||||
if removed_points.empty:
|
||||
return
|
||||
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
# 创建ret目录和对应步骤的子目录
|
||||
ret_dir = os.path.join(self.grandpa_dir, 'ret')
|
||||
os.makedirs(ret_dir, exist_ok=True)
|
||||
|
||||
for point in tqdm(points, desc=f"复制网格 {grid_idx + 1} 的图像"):
|
||||
src = os.path.join(self.config.image_dir, point["file"])
|
||||
dst = os.path.join(output_dir, point["file"])
|
||||
shutil.copy(src, dst)
|
||||
self.logger.info(f"网格 {grid_idx + 1} 包含 {len(points)} 张图像")
|
||||
self.logger.info(f"开始移动{step_name}步骤中被过滤的图片")
|
||||
|
||||
def merge_tif(self, grid_points: Dict[int, pd.DataFrame]):
|
||||
"""合并所有网格的影像产品"""
|
||||
self.logger.info("开始合并所有影像产品")
|
||||
merger = MergeTif(self.config.output_dir)
|
||||
merger.merge_all_tifs(grid_points)
|
||||
# 移动每张被过滤的图片
|
||||
for _, point in removed_points.iterrows():
|
||||
src_path = os.path.join(self.config.image_dir, point['file'])
|
||||
dst_path = os.path.join(ret_dir, point['file'])
|
||||
|
||||
def merge_obj(self, grid_points: Dict[int, pd.DataFrame]):
|
||||
"""合并所有网格的OBJ模型"""
|
||||
self.logger.info("开始合并OBJ模型")
|
||||
merger = MergeObj(self.config.output_dir)
|
||||
merger.merge_grid_obj(grid_points)
|
||||
try:
|
||||
shutil.move(src_path, dst_path)
|
||||
except Exception as e:
|
||||
self.logger.warning(f"移动图片 {point['file']} 时发生错误: {str(e)}")
|
||||
|
||||
def merge_ply(self, grid_points: Dict[int, pd.DataFrame]):
|
||||
"""合并所有网格的PLY点云"""
|
||||
self.logger.info("开始合并PLY点云")
|
||||
merger = MergePly(self.config.output_dir)
|
||||
merger.merge_grid_ply(grid_points)
|
||||
self.logger.info(f"完成移动 {len(removed_points)} 张被{step_name}过滤的图片")
|
||||
|
||||
def restore_filtered_images(self):
|
||||
"""将ret文件夹中的图片恢复到原始图片目录"""
|
||||
try:
|
||||
# 获取ret文件夹路径
|
||||
ret_dir = os.path.join(self.grandpa_dir, 'ret')
|
||||
|
||||
if not os.path.exists(ret_dir):
|
||||
self.logger.info("没有找到ret文件夹,跳过恢复步骤")
|
||||
return
|
||||
|
||||
self.logger.info("开始恢复被过滤的图片")
|
||||
|
||||
# 获取ret文件夹中的所有图片
|
||||
filtered_images = os.listdir(ret_dir)
|
||||
|
||||
# 将图片移回原始目录
|
||||
for img in filtered_images:
|
||||
src_path = os.path.join(ret_dir, img)
|
||||
dst_path = os.path.join(self.config.image_dir, img)
|
||||
try:
|
||||
shutil.move(src_path, dst_path)
|
||||
except Exception as e:
|
||||
self.logger.warning(f"恢复图片 {img} 时发生错误: {str(e)}")
|
||||
|
||||
self.logger.info(f"成功恢复 {len(filtered_images)} 张图片")
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"恢复图片过程中发生错误: {str(e)}", exc_info=True)
|
||||
raise
|
||||
|
||||
def process(self):
|
||||
"""执行完整的预处理流程"""
|
||||
try:
|
||||
self.extract_gps()
|
||||
self.cluster()
|
||||
# self.filter_time_group_overlap()
|
||||
self.filter_points()
|
||||
grid_points = self.divide_grids()
|
||||
self.copy_images(grid_points)
|
||||
self.gps_points = self.cluster(self.gps_points)
|
||||
# self.gps_points = self.filter_time_group_overlap(self.gps_points)
|
||||
self.gps_points = self.filter_points(self.gps_points)
|
||||
self.divide_grids()
|
||||
self.logger.info("预处理任务完成")
|
||||
|
||||
self.odm_monitor.process_all_grids(grid_points)
|
||||
self.merge_tif(grid_points)
|
||||
self.merge_obj(grid_points)
|
||||
self.merge_ply(grid_points)
|
||||
self.odm_monitor.run_odm_with_monitor(
|
||||
self.grandpa_dir, self.config.fast_mode)
|
||||
|
||||
self.restore_filtered_images()
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
|
||||
raise
|
||||
@ -290,8 +318,7 @@ class ImagePreprocessor:
|
||||
if __name__ == "__main__":
|
||||
# 创建配置
|
||||
config = PreprocessConfig(
|
||||
image_dir=r"E:\datasets\UAV\134\project\images",
|
||||
output_dir=r"G:\ODM_output\134_test",
|
||||
image_dir=r"G:\error_data\20241104140457\project\images",
|
||||
|
||||
cluster_eps=0.01,
|
||||
cluster_min_samples=5,
|
||||
@ -307,11 +334,11 @@ if __name__ == "__main__":
|
||||
filter_dense_distance_threshold=10,
|
||||
filter_time_threshold=timedelta(minutes=5),
|
||||
|
||||
grid_size=300,
|
||||
grid_overlap=0.1,
|
||||
grid_size=1000,
|
||||
grid_overlap=0.05,
|
||||
|
||||
|
||||
mode="重建模式",
|
||||
fast_mode=False,
|
||||
)
|
||||
|
||||
# 创建处理器并执行
|
||||
|
@ -8,33 +8,31 @@ import pandas as pd
|
||||
class ODMProcessMonitor:
|
||||
"""ODM处理监控器"""
|
||||
|
||||
def __init__(self, output_dir: str, mode: str = "快拼模式"):
|
||||
def __init__(self, output_dir: str, fast_mode: bool):
|
||||
self.output_dir = output_dir
|
||||
self.logger = logging.getLogger('UAV_Preprocess.ODMMonitor')
|
||||
self.mode = mode
|
||||
self.fast_mode = fast_mode
|
||||
|
||||
def _check_success(self, grid_dir: str) -> bool:
|
||||
"""检查ODM是否执行成功"""
|
||||
success_markers = ['odm_orthophoto', 'odm_georeferencing']
|
||||
if self.mode != "快拼模式":
|
||||
if not self.fast_mode:
|
||||
success_markers.append('odm_texturing')
|
||||
return all(os.path.exists(os.path.join(grid_dir, 'project', marker)) for marker in success_markers)
|
||||
|
||||
def run_odm_with_monitor(self, grid_dir: str, grid_idx: int, fast_mode: bool = True) -> Tuple[bool, str]:
|
||||
def run_odm_with_monitor(self, project_dir: str, fast_mode: bool = True) -> Tuple[bool, str]:
|
||||
"""运行ODM命令"""
|
||||
self.logger.info(f"开始处理网格 {grid_idx + 1}")
|
||||
|
||||
# 构建Docker命令
|
||||
grid_dir = grid_dir[0].lower()+grid_dir[1:].replace('\\', '/')
|
||||
docker_command = (
|
||||
f"docker run --gpus all -ti --rm "
|
||||
f"-v {grid_dir}:/datasets "
|
||||
f"-v {project_dir}:/datasets "
|
||||
f"opendronemap/odm:gpu "
|
||||
f"--project-path /datasets project "
|
||||
f"--max-concurrency 10 "
|
||||
f"--max-concurrency 15 "
|
||||
f"--force-gps "
|
||||
f"--feature-quality lowest "
|
||||
f"--orthophoto-resolution 10 "
|
||||
f"--split-overlap 0 "
|
||||
)
|
||||
|
||||
if fast_mode:
|
||||
@ -53,26 +51,7 @@ class ODMProcessMonitor:
|
||||
self.logger.info(f"==========stdout==========: {stdout}")
|
||||
self.logger.error(f"==========stderr==========: {stderr}")
|
||||
# 检查执行结果
|
||||
if self._check_success(grid_dir):
|
||||
self.logger.info(f"网格 {grid_idx + 1} 处理成功")
|
||||
return True, ""
|
||||
if self._check_success(image_dir):
|
||||
self.logger.info(f"处理成功")
|
||||
else:
|
||||
self.logger.error(f"网格 {grid_idx + 1} 处理失败")
|
||||
return False, f"网格 {grid_idx + 1} 处理失败"
|
||||
|
||||
def process_all_grids(self, grid_points: Dict[int, pd.DataFrame]):
|
||||
"""处理所有网格"""
|
||||
self.logger.info("开始执行网格处理")
|
||||
for grid_idx in grid_points.keys():
|
||||
grid_dir = os.path.join(
|
||||
self.output_dir, f'grid_{grid_idx + 1}'
|
||||
)
|
||||
|
||||
success, error_msg = self.run_odm_with_monitor(
|
||||
grid_dir=grid_dir,
|
||||
grid_idx=grid_idx,
|
||||
fast_mode=(self.mode == "快拼模式")
|
||||
)
|
||||
|
||||
if not success:
|
||||
raise Exception(f"网格 {grid_idx + 1} 处理失败: {error_msg}")
|
||||
self.logger.error(f"处理失败")
|
||||
|
@ -7,86 +7,84 @@ from typing import Optional
|
||||
|
||||
class FilterVisualizer:
|
||||
"""过滤结果可视化器"""
|
||||
|
||||
|
||||
def __init__(self, output_dir: str):
|
||||
"""
|
||||
初始化可视化器
|
||||
|
||||
|
||||
Args:
|
||||
output_dir: 输出目录路径
|
||||
"""
|
||||
self.output_dir = output_dir
|
||||
self.logger = logging.getLogger('UAV_Preprocess.Visualizer')
|
||||
|
||||
def visualize_filter_step(self,
|
||||
current_points: pd.DataFrame,
|
||||
previous_points: pd.DataFrame,
|
||||
step_name: str,
|
||||
save_name: Optional[str] = None):
|
||||
|
||||
def visualize_filter_step(self,
|
||||
retained_points: pd.DataFrame,
|
||||
filtered_points: pd.DataFrame,
|
||||
step_name: str,
|
||||
save_name: Optional[str] = None):
|
||||
"""
|
||||
可视化单个过滤步骤的结果
|
||||
|
||||
|
||||
Args:
|
||||
current_points: 当前步骤后的点
|
||||
previous_points: 上一步骤的点
|
||||
retained_points: 留下的点
|
||||
filtered_points: 过滤掉的点
|
||||
step_name: 步骤名称
|
||||
save_name: 保存文件名,默认为step_name
|
||||
"""
|
||||
total_points_len = len(retained_points) + len(filtered_points)
|
||||
self.logger.info(f"开始生成{step_name}的可视化结果")
|
||||
|
||||
# 找出被过滤掉的点
|
||||
filtered_files = set(previous_points['file']) - set(current_points['file'])
|
||||
filtered_points = previous_points[previous_points['file'].isin(filtered_files)]
|
||||
|
||||
|
||||
# 创建图形
|
||||
plt.figure(figsize=(20, 16))
|
||||
|
||||
|
||||
# 绘制保留的点
|
||||
plt.scatter(current_points['lon'], current_points['lat'],
|
||||
color='blue', label='Retained Points',
|
||||
alpha=0.6, s=50)
|
||||
|
||||
plt.scatter(retained_points['lon'], retained_points['lat'],
|
||||
color='blue', label='Retained Points',
|
||||
alpha=0.6, s=50)
|
||||
|
||||
# 绘制被过滤的点
|
||||
if not filtered_points.empty:
|
||||
plt.scatter(filtered_points['lon'], filtered_points['lat'],
|
||||
color='red', marker='x', label='Filtered Points',
|
||||
alpha=0.6, s=100)
|
||||
|
||||
color='red', marker='x', label='Filtered Points',
|
||||
alpha=0.6, s=100)
|
||||
|
||||
# 设置图形属性
|
||||
plt.title(f"GPS Points After {step_name}\n"
|
||||
f"(Filtered: {len(filtered_points)}, Retained: {len(current_points)})",
|
||||
fontsize=14)
|
||||
f"(Filtered: {len(filtered_points)}, Retained: {len(retained_points)})",
|
||||
fontsize=14)
|
||||
plt.xlabel("Longitude", fontsize=12)
|
||||
plt.ylabel("Latitude", fontsize=12)
|
||||
plt.grid(True)
|
||||
|
||||
|
||||
# 添加统计信息
|
||||
stats_text = (
|
||||
f"Original Points: {len(previous_points)}\n"
|
||||
f"Original Points: {total_points_len}\n"
|
||||
f"Filtered Points: {len(filtered_points)}\n"
|
||||
f"Remaining Points: {len(current_points)}\n"
|
||||
f"Filter Rate: {len(filtered_points)/len(previous_points)*100:.1f}%"
|
||||
f"Remaining Points: {len(retained_points)}\n"
|
||||
f"Filter Rate: {len(filtered_points)/total_points_len*100:.1f}%"
|
||||
)
|
||||
plt.figtext(0.02, 0.02, stats_text, fontsize=10,
|
||||
bbox=dict(facecolor='white', alpha=0.8))
|
||||
|
||||
bbox=dict(facecolor='white', alpha=0.8))
|
||||
|
||||
# 添加图例
|
||||
plt.legend(loc='upper right', fontsize=10)
|
||||
|
||||
|
||||
# 调整布局
|
||||
plt.tight_layout()
|
||||
|
||||
|
||||
# 保存图形
|
||||
save_name = save_name or step_name.lower().replace(' ', '_')
|
||||
save_path = os.path.join(self.output_dir, 'filter_imgs', f'filter_{save_name}.png')
|
||||
save_path = os.path.join(
|
||||
self.output_dir, 'filter_imgs_visual', f'filter_{save_name}.png')
|
||||
plt.savefig(save_path, dpi=300, bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
|
||||
self.logger.info(
|
||||
f"{step_name}过滤可视化结果已保存至 {save_path}\n"
|
||||
f"过滤掉 {len(filtered_points)} 个点,"
|
||||
f"保留 {len(current_points)} 个点,"
|
||||
f"过滤率 {len(filtered_points)/len(previous_points)*100:.1f}%"
|
||||
f"保留 {len(retained_points)} 个点,"
|
||||
f"过滤率 {len(filtered_points)/total_points_len*100:.1f}%"
|
||||
)
|
||||
|
||||
|
||||
@ -94,11 +92,11 @@ if __name__ == '__main__':
|
||||
# 测试代码
|
||||
import numpy as np
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
# 创建测试数据
|
||||
np.random.seed(42)
|
||||
n_points = 1000
|
||||
|
||||
|
||||
# 生成随机点
|
||||
test_data = pd.DataFrame({
|
||||
'lon': np.random.uniform(120, 121, n_points),
|
||||
@ -106,16 +104,16 @@ if __name__ == '__main__':
|
||||
'file': [f'img_{i}.jpg' for i in range(n_points)],
|
||||
'date': [datetime.now() for _ in range(n_points)]
|
||||
})
|
||||
|
||||
|
||||
# 随机选择点作为过滤后的结果
|
||||
filtered_data = test_data.sample(n=800)
|
||||
|
||||
|
||||
# 测试可视化
|
||||
visualizer = FilterVisualizer('test_output')
|
||||
os.makedirs('test_output', exist_ok=True)
|
||||
|
||||
|
||||
visualizer.visualize_filter_step(
|
||||
filtered_data,
|
||||
test_data,
|
||||
"Test Filter"
|
||||
)
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user