import logging from geopy.distance import geodesic import matplotlib.pyplot as plt import os class GridDivider: """划分九宫格,并将图片分配到对应网格""" def __init__(self, overlap=0.1, output_dir=None): self.overlap = overlap self.output_dir = output_dir self.logger = logging.getLogger('UAV_Preprocess.GridDivider') self.logger.info(f"初始化网格划分器,重叠率: {overlap}") def divide_grids(self, points_df, grid_size=500): """计算边界框并划分九宫格""" self.logger.info("开始划分九宫格") min_lat, max_lat = points_df['lat'].min(), points_df['lat'].max() min_lon, max_lon = points_df['lon'].min(), points_df['lon'].max() # 计算区域的实际距离(米) width = geodesic((min_lat, min_lon), (min_lat, max_lon)).meters height = geodesic((min_lat, min_lon), (max_lat, min_lon)).meters self.logger.info( f"区域宽度: {width:.2f}米, 高度: {height:.2f}米" ) # 计算需要划分的网格数量 num_grids_width = int( width / grid_size) if int(width / grid_size) > 0 else 1 num_grids_height = int( height / grid_size) if int(height / grid_size) > 0 else 1 # 计算每个网格对应的经纬度步长 lat_step = (max_lat - min_lat) / num_grids_height lon_step = (max_lon - min_lon) / num_grids_width grids = [] for i in range(num_grids_height): for j in range(num_grids_width): grid_min_lat = min_lat + i * lat_step - self.overlap * lat_step grid_max_lat = min_lat + \ (i + 1) * lat_step + self.overlap * lat_step grid_min_lon = min_lon + j * lon_step - self.overlap * lon_step grid_max_lon = min_lon + \ (j + 1) * lon_step + self.overlap * lon_step grids.append((grid_min_lat, grid_max_lat, grid_min_lon, grid_max_lon)) self.logger.debug( f"网格[{i},{j}]: 纬度[{grid_min_lat:.6f}, {grid_max_lat:.6f}], " f"经度[{grid_min_lon:.6f}, {grid_max_lon:.6f}]" ) self.logger.info( f"成功划分为 {len(grids)} 个网格 ({num_grids_width}x{num_grids_height})") # 添加可视化调用 self.visualize_grids(points_df, grids) return grids def assign_to_grids(self, points_df, grids): """将点分配到对应网格""" self.logger.info(f"开始将 {len(points_df)} 个点分配到网格中") grid_points = {i: [] for i in range(len(grids))} points_assigned = 0 multiple_grid_points = 0 for _, point in points_df.iterrows(): point_assigned = False for i, (min_lat, max_lat, min_lon, max_lon) in enumerate(grids): if min_lat <= point['lat'] <= max_lat and min_lon <= point['lon'] <= max_lon: grid_points[i].append(point.to_dict()) if point_assigned: multiple_grid_points += 1 else: points_assigned += 1 point_assigned = True self.logger.debug( f"点 {point['file']} (纬度: {point['lat']:.6f}, 经度: {point['lon']:.6f}) " f"被分配到网格" ) # 记录每个网格的点数 for grid_idx, points in grid_points.items(): self.logger.info(f"网格 {grid_idx} 包含 {len(points)} 个点") self.logger.info( f"点分配完成: 总点数 {len(points_df)}, " f"成功分配 {points_assigned} 个点, " f"{multiple_grid_points} 个点被分配到多个网格" ) return grid_points def visualize_grids(self, points_df, grids): """可视化网格划分和GPS点的分布""" self.logger.info("开始可视化网格划分") plt.figure(figsize=(12, 8)) # 绘制GPS点 plt.scatter(points_df['lon'], points_df['lat'], c='blue', s=10, alpha=0.6, label='GPS点') # 绘制网格 for i, (min_lat, max_lat, min_lon, max_lon) in enumerate(grids): plt.plot([min_lon, max_lon, max_lon, min_lon, min_lon], [min_lat, min_lat, max_lat, max_lat, min_lat], 'r-', alpha=0.5) # 在网格中心添加网格编号 center_lon = (min_lon + max_lon) / 2 center_lat = (min_lat + max_lat) / 2 plt.text(center_lon, center_lat, str(i), horizontalalignment='center', verticalalignment='center') plt.title('网格划分与GPS点分布图') plt.xlabel('经度') plt.ylabel('纬度') plt.legend() plt.grid(True) # 如果提供了输出目录,保存图像 if self.output_dir: save_path = os.path.join( self.output_dir, 'filter_imgs_visual', 'grid_division.png') plt.savefig(save_path, dpi=300, bbox_inches='tight') self.logger.info(f"网格划分可视化图已保存至: {save_path}") plt.close()