UAV_odm_merge/tools/show_GPS_by_time.py
2024-12-30 17:34:21 +08:00

138 lines
5.4 KiB
Python

import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import matplotlib.pyplot as plt
from datetime import timedelta
import logging
import numpy as np
from utils.gps_extractor import GPSExtractor
from utils.logger import setup_logger
class GPSTimeVisualizer:
"""按时间组可视化GPS点"""
def __init__(self, image_dir: str, output_dir: str):
self.image_dir = image_dir
self.output_dir = output_dir
self.logger = logging.getLogger('UAV_Preprocess.GPSVisualizer')
def _group_by_time(self, points_df, time_threshold=timedelta(minutes=5)):
"""按时间间隔对点进行分组"""
if 'date' not in points_df.columns:
self.logger.error("数据中缺少date列")
return [points_df]
# 将date为空的行单独作为一组
null_date_group = points_df[points_df['date'].isna()]
valid_date_points = points_df[points_df['date'].notna()]
if not null_date_group.empty:
self.logger.info(f"发现 {len(null_date_group)} 个无时间戳的点,将作为单独分组")
if valid_date_points.empty:
self.logger.warning("没有有效的时间戳数据")
return [null_date_group] if not null_date_group.empty else []
# 按时间排序
valid_date_points = valid_date_points.sort_values('date')
# 计算时间差
time_diffs = valid_date_points['date'].diff()
# 找到时间差超过阈值的位置
time_groups = []
current_group_start = 0
for idx, time_diff in enumerate(time_diffs):
if time_diff and time_diff > time_threshold:
# 添加当前组
current_group = valid_date_points.iloc[current_group_start:idx]
time_groups.append(current_group)
current_group_start = idx
# 添加最后一组
last_group = valid_date_points.iloc[current_group_start:]
if not last_group.empty:
time_groups.append(last_group)
# 如果有空时间戳的点,将其作为最后一组
if not null_date_group.empty:
time_groups.append(null_date_group)
return time_groups
def visualize_time_groups(self, time_threshold=timedelta(minutes=5)):
"""在同一张图上显示所有时间组,用不同颜色区分"""
# 提取GPS数据
extractor = GPSExtractor(self.image_dir)
gps_points = extractor.extract_all_gps()
# 按时间分组
time_groups = self._group_by_time(gps_points, time_threshold)
# 创建图形
plt.figure(figsize=(15, 10))
# 生成不同的颜色
colors = plt.cm.rainbow(np.linspace(0, 1, len(time_groups)))
# 为每个时间组绘制点和轨迹
for idx, (group, color) in enumerate(zip(time_groups, colors)):
if not group['date'].isna().any():
# 有时间戳的组
sorted_group = group.sort_values('date')
# 绘制轨迹线
plt.plot(sorted_group['lon'], sorted_group['lat'],
color=color, linestyle='-', linewidth=1.5, alpha=0.6,
label=f'Flight Path {idx + 1}')
# 绘制GPS点
plt.scatter(sorted_group['lon'], sorted_group['lat'],
color=color, marker='o', s=30, alpha=0.6)
# 标记起点和终点
plt.scatter(sorted_group['lon'].iloc[0], sorted_group['lat'].iloc[0],
color=color, marker='^', s=100,
label=f'Start {idx + 1} ({sorted_group["date"].min().strftime("%H:%M:%S")})')
plt.scatter(sorted_group['lon'].iloc[-1], sorted_group['lat'].iloc[-1],
color=color, marker='s', s=100,
label=f'End {idx + 1} ({sorted_group["date"].max().strftime("%H:%M:%S")})')
else:
# 无时间戳的组
plt.scatter(group['lon'], group['lat'],
color=color, marker='x', s=50, alpha=0.6,
label='No Timestamp Points')
plt.title("GPS Points by Time Groups", fontsize=14)
plt.xlabel("Longitude", fontsize=12)
plt.ylabel("Latitude", fontsize=12)
plt.grid(True)
# 调整图例位置和大小
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=10)
# 调整布局以适应图例
plt.tight_layout()
# 保存图片
plt.savefig(os.path.join(self.output_dir, 'gps_time_groups_combined.png'),
dpi=300, bbox_inches='tight')
plt.close()
self.logger.info(f"已生成包含 {len(time_groups)} 个时间组的组合可视化图形")
if __name__ == '__main__':
# 设置数据集路径
DATASET = r'F:\error_data\20241108134711\3D'
output_dir = r'E:\studio2\ODM_pro\test'
os.makedirs(output_dir, exist_ok=True)
# 设置日志
setup_logger(os.path.dirname(output_dir))
# 创建可视化器并生成图形
visualizer = GPSTimeVisualizer(DATASET, output_dir)
visualizer.visualize_time_groups(time_threshold=timedelta(minutes=5))