semantic-segmentation/data_preprocessing/cut_smalltif.py

112 lines
3.9 KiB
Python
Raw Normal View History

2025-05-14 20:45:42 +08:00
import numpy as np
from osgeo import gdal
def read_tif(fileName):
dataset = gdal.Open(fileName)
im_width = dataset.RasterXSize # 栅格矩阵的列数
im_height = dataset.RasterYSize # 栅格矩阵的行数
im_bands = dataset.RasterCount # 波段数
im_data = dataset.ReadAsArray().astype(np.float32) # 获取数据
if len(im_data.shape) == 2:
im_data = im_data[np.newaxis, :]
im_geotrans = dataset.GetGeoTransform() # 获取仿射矩阵信息
im_proj = dataset.GetProjection() # 获取投影信息
return im_data, im_width, im_height, im_bands, im_geotrans, im_proj
def write_tif(im_data, im_width, im_height, path, im_geotrans, im_proj):
if 'int8' in im_data.dtype.name:
datatype = gdal.GDT_Byte
elif 'int16' in im_data.dtype.name:
datatype = gdal.GDT_UInt16
else:
datatype = gdal.GDT_Float32
if len(im_data.shape) == 3:
im_bands, im_height, im_width = im_data.shape
else:
im_bands, (im_height, im_width) = 1, im_data.shape
# 创建文件
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(path, im_width, im_height, im_bands, datatype)
if dataset != None and im_geotrans != None and im_proj != None:
dataset.SetGeoTransform(im_geotrans) # 写入仿射变换参数
dataset.SetProjection(im_proj) # 写入投影
for i in range(im_bands):
dataset.GetRasterBand(i + 1).WriteArray(im_data[i])
del dataset
fileName = 'E:/RSdata/wlk_tif/wlk_right/wlk_right_cj.tif'
im_data, im_width, im_height, im_bands, im_geotrans, im_proj = read_tif(
fileName)
mask_fileName = 'E:/RSdata/wlk_tif/wlk_right/label_right_cj.tif'
mask_im_data, mask_im_width, mask_im_height, mask_im_bands, mask_im_geotrans, mask_im_proj = read_tif(
mask_fileName)
mask_im_data = np.int8(mask_im_data)
# geotiff归一化
2025-05-26 09:33:01 +08:00
lower_percent = 2
upper_percent = 98
2025-05-14 20:45:42 +08:00
for i in range(im_bands):
arr = im_data[i, :, :]
2025-05-26 09:33:01 +08:00
lower = np.percentile(arr, lower_percent)
upper = np.percentile(arr, upper_percent)
stretched = np.clip((arr - lower) / (upper - lower), 0, 1)
im_data[i] = (stretched * 255).astype(np.uint8)
2025-05-14 20:45:42 +08:00
# 计算大图每个波段的均值和方差train.py里transform会用到
im_data = im_data/255
for i in range(im_bands):
pixels = im_data[i, :, :].ravel()
print("波段{} mean: {:.4f}, std: {:.4f}".format(
i, np.mean(pixels), np.std(pixels)))
im_data = im_data*255
# 切成小图
a = 0
2025-05-26 09:33:01 +08:00
size = 448
2025-05-14 20:45:42 +08:00
for i in range(0, int(mask_im_height / size)):
for j in range(0, int(mask_im_width / size)):
im_cut = im_data[:, i * size:i * size + size, j * size:j * size + size]
2025-05-26 09:33:01 +08:00
mask_cut = mask_im_data[:, i * size:i *
size + size, j * size:j * size + size]
2025-05-14 20:45:42 +08:00
labelfla = np.array(mask_cut).flatten()
if np.all(labelfla == 15): # 15为NoData
print("Skip!!!")
else:
2025-05-26 09:33:01 +08:00
# 取5、4、3波段注意顺序
rgb_cut = np.stack([
im_cut[4], # 第5波段
im_cut[3], # 第4波段
im_cut[2], # 第3波段
], axis=0) # shape: (3, H, W)
# 转为 (H, W, 3)
rgb_cut = np.transpose(rgb_cut, (1, 2, 0))
# 归一化到0-255并转uint8
rgb_cut = np.clip(rgb_cut, 0, 255)
rgb_cut = rgb_cut.astype(np.uint8)
# 保存为jpg
from PIL import Image
rgb_img = Image.fromarray(rgb_cut)
rgb_img.save(
f'E:/RSdata/wlk_right_448/dataset_5m_jpg/img_{a}.jpg')
# mask只取第一个波段如果是单通道转uint8保存为png
mask_arr = mask_cut[0] if mask_cut.shape[0] == 1 else mask_cut
mask_arr = np.clip(mask_arr, 0, 255).astype(np.uint8)
mask_img = Image.fromarray(mask_arr)
mask_img.save(f'E:/RSdata/wlk_right_448/mask_png/mask_{a}.png')
print(f'img_{a}.jpg and mask_{a}.png saved')
2025-05-14 20:45:42 +08:00
a = a+1