diff --git a/train_JL/train_JL.py b/train_JL/train_JL.py index f2d178d..6ab4227 100644 --- a/train_JL/train_JL.py +++ b/train_JL/train_JL.py @@ -21,7 +21,7 @@ def parse_args(): parser = argparse.ArgumentParser(description="pytorch deeplabv3 training") parser.add_argument( - "--data-path", default=r"E:\datasets\wlk_right_448", help="VOCdevkit root") + "--data-path", default=r"E:\RSdata\wlk_right_448", help="VOCdevkit root") parser.add_argument("--num-classes", default=7, type=int) parser.add_argument("--device", default="cuda", help="training device") parser.add_argument("--batch-size", default=4, type=int) diff --git a/train_JL_jpg/geotiff_utils.py b/train_JL_jpg/geotiff_utils.py index dbbc433..32fe99f 100644 --- a/train_JL_jpg/geotiff_utils.py +++ b/train_JL_jpg/geotiff_utils.py @@ -166,7 +166,7 @@ class VOCYJSSegmentation(SegmentationDataset): def __getitem__(self, index): img_name = self.image_list[index].split('.')[0]+'.jpg' mask_name = self.image_list[index].split('.')[0]+'.png' - mask_name = mask_name.replace('img', 'mask') + # mask_name = mask_name.replace('img', 'mask') img_LS = np.array(Image.open(os.path.join( self._image_LS_dir, img_name))).astype(np.float32) mask = np.array(Image.open(os.path.join( diff --git a/train_JL_jpg/train_JL.py b/train_JL_jpg/train_JL.py index 97952ad..8ba772e 100644 --- a/train_JL_jpg/train_JL.py +++ b/train_JL_jpg/train_JL.py @@ -25,7 +25,7 @@ def parse_args(): parser.add_argument("--num-classes", default=7, type=int) parser.add_argument("--device", default="cuda", help="training device") parser.add_argument("--batch-size", default=4, type=int) - parser.add_argument("--epochs", default=50, type=int, metavar="N", + parser.add_argument("--epochs", default=200, type=int, metavar="N", help="number of total epochs to train") parser.add_argument('--lr', default=0.005, type=float, help='initial learning rate') diff --git a/train_LS/train_LS.py b/train_LS/train_LS.py index b66137e..e990f40 100644 --- a/train_LS/train_LS.py +++ b/train_LS/train_LS.py @@ -25,7 +25,7 @@ def parse_args(): parser.add_argument("--num-classes", default=13, type=int) parser.add_argument("--device", default="cuda", help="training device") parser.add_argument("--batch-size", default=8, type=int) - parser.add_argument("--epochs", default=50, type=int, metavar="N", + parser.add_argument("--epochs", default=200, type=int, metavar="N", help="number of total epochs to train") parser.add_argument('--lr', default=0.005, type=float, help='initial learning rate')