import numpy as np from osgeo import gdal def read_tif(fileName): dataset = gdal.Open(fileName) im_width = dataset.RasterXSize # 栅格矩阵的列数 im_height = dataset.RasterYSize # 栅格矩阵的行数 im_bands = dataset.RasterCount # 波段数 im_data = dataset.ReadAsArray().astype(np.float32) # 获取数据 if len(im_data.shape) == 2: im_data = im_data[np.newaxis, :] im_geotrans = dataset.GetGeoTransform() # 获取仿射矩阵信息 im_proj = dataset.GetProjection() # 获取投影信息 return im_data, im_width, im_height, im_bands, im_geotrans, im_proj def write_tif(im_data, im_width, im_height, path, im_geotrans, im_proj): if 'int8' in im_data.dtype.name: datatype = gdal.GDT_Byte elif 'int16' in im_data.dtype.name: datatype = gdal.GDT_UInt16 else: datatype = gdal.GDT_Float32 if len(im_data.shape) == 3: im_bands, im_height, im_width = im_data.shape else: im_bands, (im_height, im_width) = 1, im_data.shape # 创建文件 driver = gdal.GetDriverByName("GTiff") dataset = driver.Create(path, im_width, im_height, im_bands, datatype) if dataset != None and im_geotrans != None and im_proj != None: dataset.SetGeoTransform(im_geotrans) # 写入仿射变换参数 dataset.SetProjection(im_proj) # 写入投影 for i in range(im_bands): dataset.GetRasterBand(i + 1).WriteArray(im_data[i]) del dataset fileName = 'E:/RSdata/wlk_tif/wlk_right/wlk_right3.tif' im_data, im_width, im_height, im_bands, im_geotrans, im_proj = read_tif( fileName) fileName2 = 'E:/RSdata/wlk_tif/wlk_right/wlk_right_cjdan.tif' im_data2, im_width2, im_height2, im_bands2, im_geotrans2, im_proj2 = read_tif( fileName2) # fileName3 = 'E:/RSdata/wlk_tif/wlk_right/wlk_right_cj10m.tif' # im_data3, im_width3, im_height3, im_bands3, im_geotrans3, im_proj3 = read_tif( # fileName3) # fileName4 = 'E:/RSdata/wlk_tif/wlk_right/wlk_right_cj20m.tif' # im_data4, im_width4, im_height4, im_bands4, im_geotrans4, im_proj4 = read_tif( # fileName4) mask_fileName = 'E:/RSdata/wlk_tif/wlk_right/label_right_cj.tif' mask_im_data, mask_im_width, mask_im_height, mask_im_bands, mask_im_geotrans, mask_im_proj = read_tif( mask_fileName) mask_im_data = np.int8(mask_im_data) # geotiff归一化 for i in range(im_bands): arr = im_data[i, :, :] Min = arr.min() Max = arr.max() normalized_arr = (arr-Min)/(Max-Min)*255 im_data[i] = normalized_arr for i in range(im_bands2): arr = im_data2[i, :, :] Min = arr.min() Max = arr.max() normalized_arr = (arr-Min)/(Max-Min)*255 im_data2[i] = normalized_arr # # 计算大图每个波段的均值和方差,train.py里transform会用到 # im_data2 = im_data2/255 # for i in range(im_bands2): # pixels = im_data2[i, :, :].ravel() # print("波段{} mean: {:.4f}, std: {:.4f}".format( # i, np.mean(pixels), np.std(pixels))) # 切成小图 a = 0 size = 224 for i in range(0, int(im_height / size)): for j in range(0, int(im_width / size)): im_cut = im_data[:, i * size*4:i * size*4 + size*4, j * size*4:j * size*4 + size*4] im_cut2 = im_data2[:, i * size*4:i * size*4 + size*4, j * size*4:j * size*4 + size*4] # im_cut3 = im_data3[:, i * size*2:i * size*2 + # size*2, j * size*2:j * size*2 + size*2] # im_cut4 = im_data4[:, i * size:i * size + # size, j * size:j * size + size] mask_cut = mask_im_data[:, i * size*4:i * size*4 + size*4, j * size*4:j * size*4 + size*4] # 以20m为判断基准,同时处理geotiff和mask labelfla_bool = np.all(np.array(mask_cut).flatten() == 15) if labelfla_bool: print("False") else: left_h = i * size*4 * im_geotrans[5] + im_geotrans[3] left_w = j * size*4 * im_geotrans[1] + im_geotrans[0] new_geotrans = np.array(im_geotrans) new_geotrans[0] = left_w new_geotrans[3] = left_h out_geotrans = tuple(new_geotrans) im_out = 'E:/RSdata/mask_5m/dataset_5m/geotiff' + \ str(a) + '.tif' write_tif(im_cut, size*4, size*4, im_out, out_geotrans, im_proj) print(im_out + 'Cut to complete') left_h2 = i * size*4 * im_geotrans2[5] + im_geotrans2[3] left_w2 = j * size*4 * im_geotrans2[1] + im_geotrans2[0] new_geotrans = np.array(im_geotrans2) new_geotrans[0] = left_w2 new_geotrans[3] = left_h2 out_geotrans = tuple(new_geotrans) im_out = 'E:/RSdata/mask_5m/dataset_dan/geotiff' + \ str(a) + '.tif' write_tif(im_cut2, size*4, size*4, im_out, out_geotrans, im_proj2) print(im_out + 'Cut to complete') # left_h3 = i * size*2 * im_geotrans3[5] + im_geotrans3[3] # left_w3 = j * size*2 * im_geotrans3[1] + im_geotrans3[0] # new_geotrans = np.array(im_geotrans3) # new_geotrans[0] = left_w3 # new_geotrans[3] = left_h3 # out_geotrans = tuple(new_geotrans) # im_out = 'E:/mask_20m/all/dataset_10m/geotiff' + \ # str(a) + '.tif' # write_tif(im_cut3, size*2, size*2, im_out, out_geotrans, im_proj3) # print(im_out + 'Cut to complete') # left_h4 = i * size * im_geotrans4[5] + im_geotrans4[3] # left_w4 = j * size * im_geotrans4[1] + im_geotrans4[0] # new_geotrans = np.array(im_geotrans4) # new_geotrans[0] = left_w4 # new_geotrans[3] = left_h4 # out_geotrans = tuple(new_geotrans) # im_out = 'E:/mask_20m/all/dataset_20m/geotiff' + \ # str(a) + '.tif' # write_tif(im_cut4, size, size, im_out, out_geotrans, im_proj4) # print(im_out + 'Cut to complete') mask_left_h = i * size*4 * \ mask_im_geotrans[5] + mask_im_geotrans[3] mask_left_w = j * size*4 * \ mask_im_geotrans[1] + mask_im_geotrans[0] mask_new_geotrans = np.array(mask_im_geotrans) mask_new_geotrans[0] = mask_left_w mask_new_geotrans[3] = mask_left_h mask_out_geotrans = tuple(mask_new_geotrans) mask_out = 'E:/RSdata/mask_5m/mask/geotiff' + str(a) + '.tif' write_tif(mask_cut, size*4, size*4, mask_out, mask_out_geotrans, mask_im_proj) print(mask_out + 'Cut to complete') a = a+1