import numpy as np from osgeo import gdal def read_tif(fileName): dataset = gdal.Open(fileName) im_width = dataset.RasterXSize # 栅格矩阵的列数 im_height = dataset.RasterYSize # 栅格矩阵的行数 im_bands = dataset.RasterCount # 波段数 im_data = dataset.ReadAsArray().astype(np.float32) # 获取数据 if len(im_data.shape) == 2: im_data = im_data[np.newaxis, :] im_geotrans = dataset.GetGeoTransform() # 获取仿射矩阵信息 im_proj = dataset.GetProjection() # 获取投影信息 return im_data, im_width, im_height, im_bands, im_geotrans, im_proj def write_tif(im_data, im_width, im_height, path, im_geotrans, im_proj): if 'int8' in im_data.dtype.name: datatype = gdal.GDT_Byte elif 'int16' in im_data.dtype.name: datatype = gdal.GDT_UInt16 else: datatype = gdal.GDT_Float32 if len(im_data.shape) == 3: im_bands, im_height, im_width = im_data.shape else: im_bands, (im_height, im_width) = 1, im_data.shape # 创建文件 driver = gdal.GetDriverByName("GTiff") dataset = driver.Create(path, im_width, im_height, im_bands, datatype) if dataset != None and im_geotrans != None and im_proj != None: dataset.SetGeoTransform(im_geotrans) # 写入仿射变换参数 dataset.SetProjection(im_proj) # 写入投影 for i in range(im_bands): dataset.GetRasterBand(i + 1).WriteArray(im_data[i]) del dataset fileName = 'E:/RSdata/wlk_tif/wlk_right/wlk_right_cj.tif' im_data, im_width, im_height, im_bands, im_geotrans, im_proj = read_tif( fileName) mask_fileName = 'E:/RSdata/wlk_tif/wlk_right/label_right_cj.tif' mask_im_data, mask_im_width, mask_im_height, mask_im_bands, mask_im_geotrans, mask_im_proj = read_tif( mask_fileName) mask_im_data = np.int8(mask_im_data) # geotiff归一化 lower_percent = 2 upper_percent = 98 for i in range(im_bands): arr = im_data[i, :, :] lower = np.percentile(arr, lower_percent) upper = np.percentile(arr, upper_percent) stretched = np.clip((arr - lower) / (upper - lower), 0, 1) im_data[i] = (stretched * 255).astype(np.uint8) # 计算大图每个波段的均值和方差,train.py里transform会用到 im_data = im_data/255 for i in range(im_bands): pixels = im_data[i, :, :].ravel() print("波段{} mean: {:.4f}, std: {:.4f}".format( i, np.mean(pixels), np.std(pixels))) im_data = im_data*255 # 切成小图 a = 0 size = 448 for i in range(0, int(mask_im_height / size)): for j in range(0, int(mask_im_width / size)): im_cut = im_data[:, i * size:i * size + size, j * size:j * size + size] mask_cut = mask_im_data[:, i * size:i * size + size, j * size:j * size + size] labelfla = np.array(mask_cut).flatten() if np.all(labelfla == 15): # 15为NoData print("Skip!!!") else: # 取5、4、3波段,注意顺序 rgb_cut = np.stack([ im_cut[4], # 第5波段 im_cut[3], # 第4波段 im_cut[2], # 第3波段 ], axis=0) # shape: (3, H, W) # 转为 (H, W, 3) rgb_cut = np.transpose(rgb_cut, (1, 2, 0)) # 归一化到0-255并转uint8 rgb_cut = np.clip(rgb_cut, 0, 255) rgb_cut = rgb_cut.astype(np.uint8) # 保存为jpg from PIL import Image rgb_img = Image.fromarray(rgb_cut) rgb_img.save( f'E:/RSdata/wlk_right_448/dataset_5m_jpg/img_{a}.jpg') # mask只取第一个波段(如果是单通道),转uint8保存为png mask_arr = mask_cut[0] if mask_cut.shape[0] == 1 else mask_cut mask_arr = np.clip(mask_arr, 0, 255).astype(np.uint8) mask_img = Image.fromarray(mask_arr) mask_img.save(f'E:/RSdata/wlk_right_448/mask_png/mask_{a}.png') print(f'img_{a}.jpg and mask_{a}.png saved') a = a+1